TABLE OF CONTENTS

06 – TECHNICAL SPECIFICATIONS .. 57

03 787 RFI ENGINE

01 – LEAK TEST .. 59
 GENERAL .. 59
 TESTING PROCEDURE ... 59
 ENGINE LEAKAGE DIAGNOSTIC FLOW CHART .. 63

02 – MAGNETO SYSTEM .. 65
 DISASSEMBLY ... 67
 CLEANING ... 68
 ASSEMBLY ... 69

03 – TOP END ... 71
 GENERAL .. 73
 DISASSEMBLY ... 74
 CLEANING ... 79
 INSPECTION .. 80
 ASSEMBLY ... 80
 ADJUSTMENT .. 86

04 – BOTTOM END .. 87
 GENERAL .. 89
 DISASSEMBLY ... 89
 CLEANING ... 93
 INSPECTION .. 94
 ASSEMBLY ... 94

05 – ROTARY VALVE ... 101
 GENERAL .. 103
 INSPECTION (ASSEMBLED ENGINE) ... 103
 DISASSEMBLY ... 103
 CLEANING ... 105
 INSPECTION (DISASSEMBLED ENGINE) ... 105
 ASSEMBLY ... 105
 ROTARY VALVE TIMING .. 109

06 – TECHNICAL SPECIFICATIONS .. 111
SAFETY NOTICE

This ENGINE SHOP MANUAL has been prepared as a guide to correctly service and repair the 717 and 787 RFI Rotax® engines.

This edition was primarily published to be used by technicians who are already familiar with all service procedures relating to BRP products. Mechanical technicians should attend training courses given by BRP Training Dept.

Please note that the instructions will apply only if proper hand tools and special service tools are used.

It is understood that this manual may be translated into another language. In the event of any discrepancy, the English version shall prevail.

The content depicts parts and/or procedures applicable to the particular product at time of writing. Service and Warranty Bulletins may be published to update the content of this manual. Make sure to read and understand these.

In addition, the sole purpose of the illustrations throughout the manual, is to assist identification of the general configuration of the parts. They are not to be interpreted as technical drawings or exact replicas of the parts.

The use of BRP parts is most strongly recommended when considering replacement of any component. Dealer and/or distributor assistance should be sought in case of doubt.

The engines identified in this document should not be utilized on product(s) other than those for which it was designed.

⚠️ WARNING

Unless otherwise specified, engine should be turned OFF and cold for all maintenance and repair procedures.

This manual emphasizes particular information denoted by the wording and symbols:

⚠️ WARNING

Identifies an instruction which, if not followed, could cause serious personal injury including possibility of death.

CAUTION: Denotes an instruction which, if not followed, could severely damage engine components.

NOTE: Indicates supplementary information needed to fully complete an instruction.

Although the mere reading of such information does not eliminate the hazard, your understanding of the information will promote its correct use. Always use common shop safety practice.

BRP disclaims liability for all damages and/or injuries resulting from the improper use of the contents. We strongly recommend that any services be carried out and/or verified by a highly skilled professional mechanic. It is understood that certain modifications may render use of the engine illegal under existing federal, provincial and state regulations.

smr2006-074

III

www.SeaDooManuals.net
INTRODUCTION

GENERAL INFORMATION

This ENGINE SHOP MANUAL covers the 717 and 787 RFI Rotax made engines. It should be used in conjunction with the appropriate VEHICLE SHOP MANUAL.

The information and component/system descriptions contained in this manual are correct at time of writing. BRP however, maintains a policy of continuous improvement of its products without imposing upon itself any obligation to install them on products previously manufactured.

BRP reserves the right at any time to discontinue or change specifications, designs, features, models or equipment without incurring obligation.

This ENGINE SHOP MANUAL uses technical terms which may be different from the ones of the Parts Catalogs.

When ordering parts always refer to the specific model Parts Catalogs.

ENGINE IDENTIFICATION NUMBER (E.I.N.)

717 Engines

The Engine Identification Number is located on the upper side of the magneto housing.

787 RFI Engines

The Engine Identification Number is located on the upper crankcase on PTO side.

ENGINE EMISSIONS INFORMATION

Refer to the appropriate VEHICLE SHOP MANUAL.

TIGHTENING TORQUES

Tighten fasteners to torque mentioned in exploded views and/or text.

WARNING

Torque wrench tightening specifications must strictly be adhered to. Locking devices (e.g.: locking tabs, elastic stop nuts, self-locking fasteners, etc.) must be installed or replaced with new ones, where specified. If the efficiency of a locking device is impaired, it must be renewed.
ARRANGEMENT OF THIS MANUAL, ILLUSTRATIONS AND PROCEDURES

The manual is divided into many major sections as you can see in the main table of contents at the beginning of the manual.

Several sections are divided in various sub-sections. There is a table of contents at the beginning of many sections.

The illustrations show the typical construction of the different assemblies and, in all cases, may not reproduce the full detail or exact shape of the parts shown, however, they represent parts which have the same or a similar function.

CAUTION: These engines are designed with parts dimensioned mostly in the metric system. However some components may be from the imperial system. When replacing fasteners, make sure to use only those recommended by BRP.

As many of the procedures in this manual are inter-related, we suggest, that before undertaking any task, you read and thoroughly understand the entire section or subsection in which the procedure is contained.

A number of procedures throughout the book require the use of special tools. Before undertaking any procedure, be sure that you have on hand all the tools required, or approved equivalents.
Introduction

Typical Page

- Subsection title indicates beginning of the subsection.
- Italic sub-title above exploded view indicates pertaining models.
- Drop represents a liquid product to be applied to a surface. In this case, Loctite 243 to screw threads.
- Exploded view assists you in identifying parts and related positions.
- Bold face number indicates special procedure concerning this part.
- Illustration number for publishing process.
- Tightening torque nearby fastener. In this case, nut must be torqued to 145 N·m (107 lbf·ft).

CAUTION: Pay attention to torque specifications. Some of these are in lb·in instead of lbf·ft. Use appropriate torque wrench.
MEASUREMENT PROCEDURES

NOTE: This section explains the procedures to correctly measure engine components. For the engine technical specifications, refer to INSPECTION in the appropriate ENGINE subsection.

CYLINDER HEAD WARPAGE

Check gasketed surface of the cylinder head with a straight edge and a feeler gauge. Make sure part is within the given specification. If cylinder head is out of specification, replace it. Verify combustion chamber volume to use the correct cylinder base gasket with the new part.

CYLINDER TAPER

Using a cylinder bore gauge, measure cylinder diameter at 16 mm (5/8 in) from top of cylinder just below auxiliary transfer port, facing exhaust port and just below the auxiliary transfer port facing the exhaust port. Compare readings. If the difference between readings exceed specification, cylinder should be rebored and honed or replaced.

CYLINDER OUT OF ROUND

Using a cylinder bore gauge, measure cylinder diameter at 16 mm (5/8 in) from top of cylinder. Measure diameter in piston pin axis direction then perpendicularly (90°) to it. If the difference between readings exceed specification, cylinder should be rebored and honed or replaced.

COMBUSTION CHAMBER VOLUME MEASUREMENT

NOTE: This procedure is required to determine the thickness of the cylinder base gasket to be installed if a crank repair has involved replacement of connecting rods or if you are experiencing repetitive engine seizure.

The combustion chamber volume is the region in the cylinder head above the piston at Top Dead Center (TDC). It is measured with the cylinder head installed on the engine.
NOTE: When checking the combustion chamber volume, engine must be cold, piston must be free of carbon deposit and cylinder head must be leveled.

– Remove both spark plugs and bring one piston to Top Dead Center using a TDC gauge.
– Obtain a graduated burette (capacity 0 - 50 cc) and fill with an equal part (50/50) of gasoline and injection oil.

NOTE: The liquid level in cylinder must not drop for a few seconds after filling. If so, there is a leak between piston and cylinder. The recorded volume would be false.

– Let burette stand upward for about 10 minutes, until liquid level is stabilized.
– Read the burette scale to obtain the quantity of liquid injected in the combustion chamber.

The volume should be within the allowable range. Refer to TOP END section of the appropriate engine for the specifications.

If the volume of the combustion chamber is not within specifications, change cylinder base gasket thickness as follow.

A higher volume dictates a thinner gasket.
A lower volume dictates a thicker gasket.

– Repeat the procedure for the other cylinder.

PISTON/CYLINDER WALL CLEARANCE

Method with a Used Piston

Using a micrometer, measure piston skirt perpendicularly (90°) to piston pin and at the specified distance as per following table.

<table>
<thead>
<tr>
<th>ENGINE</th>
<th>MAXIMUM “A” mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>717</td>
<td>29 (1.142)</td>
</tr>
<tr>
<td>787 RFI</td>
<td>28 (1.102)</td>
</tr>
</tbody>
</table>
1. Measuring perpendicularly (90°) to piston pin axis
A. See previous table

Note the piston dimension on the piston dome and compare it with the obtained result.

NOTE: The measured dimension must not be less than 0.12 mm (.005 in) of the one scribed on piston dome. Otherwise, use a new piston and measure piston/cylinder wall clearance following method with a new piston.

If piston is within specifications, adjust and lock the micrometer to the obtained piston dimension.

Proceed with FINAL MEASUREMENT PROCEDURE WITH EITHER A USED OR NEW PISTON below.

Method with a New Piston
To determine the piston dimension, take the measurement on the piston dome.

Adjust and lock a micrometer to the specified value on the piston dome.
Proceed with FINAL MEASUREMENT PROCEDURE WITH EITHER A USED OR NEW PISTON below.

Final Measurement Procedure with either a Used or New Piston

With the micrometer set to the piston dimension, adjust a cylinder bore gauge to the micrometer dimension and set the indicator to zero.

1. Use the micrometer to set the cylinder bore gauge
2. Dial bore gauge

Read the measurement on the cylinder bore gauge. The result is the exact piston/cylinder wall clearance.

NOTE: Make sure the cylinder bore gauge indicator is set exactly at the same position as with the micrometer, otherwise the reading will be false.

RING/PISTON GROOVE CLEARANCE

Using a feeler gauge, check clearance between rectangular ring and groove. If clearance exceeds specified tolerance, replace piston.
NOTE: Ring/piston groove clearance can be correctly measured only on rectangular ring which is bottom ring.

RING END GAP

Position ring halfway between exhaust port and top of cylinder.

NOTE: In order to correctly position ring in cylinder, use piston as a pusher.

Using a feeler gauge, check ring end gap. If gap exceeds specified tolerance, rings should be replaced.

CRANKSHAFT (ASSEMBLED ENGINE)

The following checks can be performed with engine in watercraft without overhauling engine.

Crankshaft Alignment at Center Main Journal

Since it is an assembled crankshaft it can become misaligned or deflected. Crankshaft can be twisted on center main journal, changing timing of one cylinder in relation with the other.

1. Top of cylinder
2. Ring end gap

To accurately check if crankshaft is twisted on center main journal, proceed as follows:

- Remove magneto housing cover.
- Remove flywheel nut and magneto roto. Refer to MAGNETO SYSTEM for procedures.
- Install the degree wheel (P/N 529 035 607) on crankshaft end. Hand-tighten nut only.
- Remove both spark plugs.
- Install a TDC gauge in spark plug hole on MAG side.
- Bring MAG piston at Top Dead Center.
- As a needle pointer, secure a wire with a cover screw and a washer.
- Rotate degree wheel (NOT crankshaft) so that needle pointer reads 360°.
Section 01 ENGINE MEASUREMENT
Subsection 01 (MEASUREMENT PROCEDURES)

Typical
1. TDC gauge
2. Degree wheel
3. Hand tighten nut
4. Needle pointer

- Remove TDC gauge and install on PTO side.
- Bring PTO piston at Top Dead Center.

Interval between cylinders must be exactly 180° therefore, needle pointer must indicate 180° on degree wheel (360° - 180° = 180°).

Any other reading indicates a misaligned crankshaft.

Crankshaft Alignment at Connecting Rod Journal

Counterweights can also be twisted on connecting rod journal on any or both cylinder(s).

Such misalignment may make it difficult to manually turn the crankshaft. Verification can be done by measuring deflection each end of crankshaft.

If deflection is found greater than specified tolerance, this indicates worn bearing(s), bent and/or misaligned crankshaft. Proceed with the disassembly of the engine.

Crankshaft (Disassembled Engine)

The following verifications can be performed with the engine disassembled.

Connecting Rod Straightness

Align a steel ruler on edge of small end connecting rod bore. Check if ruler is perfectly aligned with edge of big end.
Crankshaft Deflection

Crankshaft deflection is measured each end with a dial indicator.

First, check deflection with crankshaft in crankcase. If deflection exceeds the specified tolerance, it can be either ball bearings wear, bent or twisted crankshaft at connecting rod journal.

Remove crankshaft bearings and check deflection again on V-shaped blocks as illustrated.

NOTE: Crankshaft deflection cannot be correctly measured between centers of a lathe. If the deflection exceeds the specified tolerance, crankshaft should be repaired or replaced.

Connecting Rod Big End Axial Play

Using a feeler gauge, measure distance between thrust washer and crankshaft counterweight.
Section 01 ENGINE MEASUREMENT
Subsection 01 (MEASUREMENT PROCEDURES)

1. Measuring big end axial play
2. Feeler gauge

Connecting Rod Straightness
Align a steel ruler on edge of small end connecting rod bore. Check if ruler is perfectly aligned with edge of big end.

ROTARY VALVE

Rotary Valve/Cover Clearance

45° FEELER GAUGE METHOD
Remove intake manifold from rotary valve cover. Remove rotary valve cover and valve. Remove O-ring from rotary valve cover. Reinstall cover WITHOUT its O-ring and torque screws to 20 N•m (15 lbf•ft).

Insert a feeler gauge blade through cover inlet ports to verify clearance. At least verify clearance at two different places in each port.

Feeler gauge blade thickness according to specifications should fit between rotary valve and cover.

If rotary valve cover clearance is out of specifications, machine rotary valve cover seating surface or replace the cover.

SOLDERING WIRE METHOD
Remove rotary valve cover. Remove O-ring from rotary valve cover. Use the following type of solder:
- resin core
- diameter : 0.8 mm (.032 in)
- electronic application (available at electronic stores).

Install 2 soldering wire pieces of 13 mm (1/2 in) long directly on rotary valve, one above and one below rotary valve gear. Apply grease to hold solder in position.

Refer to the following illustration for proper position of rotary valve and pieces of soldering wire.

Reinstall cover WITHOUT its O-ring and torque screws to 20 N•m (15 lbf•ft).
Remove cover then clean and measure compressed soldering wire thickness, it must be within the specified tolerance.
If rotary valve cover clearance is over specified tolerances, machine rotary valve cover seating surface or replace the cover.

Machining the Rotary Valve Cover
The amount of material over tolerance must be removed from the rotary valve cover seating surface.
Also cut the O-ring groove the same amount to keep the 1.00 ± 0.03 mm (.039 ± .001 in) depth between the bottom of the groove and the seating surface.
Remove burrs on the edges of the seating surface and O-ring groove.

Rotary Valve Shaft Deflection
Deflection is measured with a dial gauge. Install rotary valve shaft in crankcase half, without its gear.

NOTE: End bearing must be in crankcase half.
Measure shaft deflection next to gear splines.

Reverify the clearance.
At assembly, the rotary valve timing must remain as per original setting.

NOTE: If rotary valve crankcase surface is worn, it is possible to have it reworked at the factory.
LEAK TEST

SERVICE TOOLS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>engine leak test kit</td>
<td>295 500 352</td>
<td>11</td>
</tr>
<tr>
<td>large hose pincher</td>
<td>529 032 500</td>
<td>13</td>
</tr>
<tr>
<td>small hose pincher</td>
<td>295 000 076</td>
<td>11-13</td>
</tr>
</tbody>
</table>

GENERAL

The engine leak test kit (P/N 295 500 352) is available to help diagnose engine problems such as engine seizure, poor performance, oil leakage, etc.

Before disassembling any components of the engine, it is important to perform a leakage test to determine which part is defective.

It is also very important after servicing the engine, even for a complete engine rebuilt, to perform another leakage test; at this stage, it may avoid further engine problems and minimizing the risk of having to remove and reinstall the engine again.

Static bench testing is the most effective way to conduct a leakage test. Inboard testing does not allow complete access to, and observation of all engine surfaces and should be avoided whenever possible.

On this engine, cylinders can not be verified individually due to leakage from one cylinder to another through a common intake manifold.

When installing hoses of the leak test kit, use the collars provided in the kit to ensure a proper sealing.

When pressurizing the engine, first confirm that the components of the leak test kit are not leaking by spraying a solution of soapy water on all hoses, connections, fittings, plates, etc. If there is a leak, bubbles will indicate leak location.

Three areas of the engine will be tested in sequence as per the diagnostic flow chart (see the end of this subsection).

1. Engine Cooling System.
2. Bottom End and Top End.
3. Rotary Valve Shaft.

NOTE: If a leak is found, it is important to continue testing as there is the possibility of having more than one leak. Continue pumping to compensate for the air lost to find another leak.

PREPARATION

Using the appropriate VEHICLE SHOP MANUAL, remove the engine from the vehicle and place it on a bench or an appropriate engine support.

TESTING PROCEDURE

Engine Cooling System

Remove the exhaust manifold gasket and ensure the surface is clean.

Install the appropriate exhaust manifold plate from the engine leak test kit (P/N 295 500 352). Tighten plate using fasteners provided in the kit.

NOTE: Do not torque plate excessively.

Install a small hose pincher (P/N 295 000 076) on engine drain hose.
1. Engine drain hose blocked with a hose pincher

Use hoses provided in the kit and install them on the engine.
Install pump using reducer and appropriate tube(s) as necessary.

Activate pump and pressurize engine cooling system to 34 kPa (5 PSI).
Wait 3 minutes and check if pressure drops; if so, verify all testing components.

- If kit components are not leaking and pressure drops, verify all external jointed surfaces, temperature sensor and the O-ring between the spark plug area and the cylinder head cover. If none of these components are leaking, there is an internal leak and it can be detected with BOTTOM END AND TOP END testing.

Bottom End and Top End

Remove the carburetor and gasket. Make sure the surface of the intake manifold is clean.
Install the intake plate with fasteners from the kit and tighten adequately.
Make sure the spark plugs are installed and tightened.
Block pulse hose using a small hose pincher (P/N 295 000 076).

NOTE: Do not block the rotary valve shaft hoses.
Install pump to the exhaust plate fitting.
Activate pump and pressurize engine to 34 kPa (5 PSI).

CAUTION: Do not exceed this pressure.

Wait 3 minutes and check if pressure drops; if so, verify all testing components.

If kit components are not leaking, verify engine jointed surfaces as per following areas:
- spark plugs
- cylinder head gasket
- cylinder base gasket
- crankcase halves
- rotary valve cover
- engine plugs
- exhaust manifold
- intake manifold
- oil injection pump.

Check also small oil injection pump lines and fittings; check for air bubbles or oil column going toward pump, which indicate a defective check valve.

If the above mentioned components are not leaking, block both oil hoses of the rotary valve shaft using small hose pincher (P/N 295 000 076) on each side.

NOTE: If leakage stops at this point, proceed with ROTARY VALVE SHAFT testing.

If there is still some leakage, remove the PTO flywheel to verify outer seal.

If no leak is found on the PTO side outer seal, remove magneto flywheel and verify crankshaft outer seals.

Proceed with the ROTARY VALVE SHAFT testing if the crankshaft outer seals are not leaking.

Rotary Valve Shaft

NOTE: It is mandatory to drain the injection oil from the rotary valve shaft.

Block oil return hose of the rotary valve shaft with a large hose pincher (P/N 529 032 500).

Install pump with reducer and nipple to the oil supply hose of the rotary valve shaft.
Activate pump and pressurize to 34 kPa (5 PSI). Check plug of the rotary valve shaft in crankcase. Remove PTO side spark plug. If pressure drops, it indicates a defective PTO side crankshaft inner seal or crankcase is not sealed correctly.

Remove MAG side spark plug. If pressure drops, it indicates a defective MAG side crankshaft inner seal or crankcase is not sealed correctly.

If the above mentioned components are not leaking and there is a pressure drop, remove the rotary valve cover. Check the seal of the rotary valve shaft.

If the rotary valve shaft is not leaking, it could indicate a defective engine casting. Disassemble engine and carefully check for defects in castings. Pay attention to tapped holes which may go through sealed areas of engine and thus lead to leakage.
MAGNETO SYSTEM

SERVICE TOOLS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>extension handle</td>
<td>295 000 125</td>
<td>19</td>
</tr>
<tr>
<td>M8 x 35 screws</td>
<td>420 841 591</td>
<td>19</td>
</tr>
<tr>
<td>magneto coil centering tool</td>
<td>420 876 922</td>
<td>22</td>
</tr>
<tr>
<td>magneto puller</td>
<td>529 035 547</td>
<td>19</td>
</tr>
<tr>
<td>puller plate</td>
<td>420 876 081</td>
<td>19</td>
</tr>
<tr>
<td>sleeves</td>
<td>420 847 220</td>
<td>19</td>
</tr>
</tbody>
</table>

SERVICE PRODUCTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>anticorrosion spray</td>
<td>219 700 304</td>
<td>22</td>
</tr>
<tr>
<td>Loctite 243 (blue)</td>
<td>293 800 060</td>
<td>22–23</td>
</tr>
<tr>
<td>Loctite 648 (green)</td>
<td>413 711 400</td>
<td>22</td>
</tr>
<tr>
<td>Loctite 767 (antiseize lubricant)</td>
<td>293 800 070</td>
<td>23</td>
</tr>
<tr>
<td>Loctite chisel (gasket remover)</td>
<td>413 708 500</td>
<td>21</td>
</tr>
</tbody>
</table>
DISASSEMBLY

NOTE: The magneto system can be disassembled without removing the engine from the watercraft.

Magneto Cover
Remove screws no. 1 and wire support no. 2, then withdraw magneto cover no. 3.

Magneto Flywheel and Ring Gear
To remove magneto flywheel no. 4, lock it with puller plate (P/N 420 876 081), sleeves (P/N 420 847 220) and extension handle (P/N 295 000 125).

Using three M8 x 35 screws (P/N 420 841 591), install screws through puller plate and slide sleeves on screws then secure puller plate on magneto flywheel so that sleeves are against ring gear no. 5.

Install extension handle on end of puller plate.

NOTE: If socket is found too large to be inserted in puller plate, machine or grind its outside diameter as necessary.

Remove nut no. 6 and lock washer no. 7 from magneto flywheel.
Magneto flywheel is easily freed from crankshaft with magneto puller (P/N 529 035 547).

Fully thread on puller in puller plate.
Tighten puller bolt and at the same time, tap on bolt head using a hammer to release magneto flywheel from its taper.

Using a suitable socket, unscrew retaining nut no. 6 COUNTERCLOCKWISE when facing it.
Lay magneto flywheel no. 4 on a steel plate. Tap lightly on ring gear no. 5 using a hammer to release it from magneto flywheel.

Proceed as follows:
- Before removing the armature plate, find a crankcase locating lug (the top one in this example).
- Place a cold chisel at the end of chosen lug, then punch a mark on armature plate at this point.
- At assembly, align armature plate mark (previously punched) with the end of the corresponding locating lug on the new crankcase.

Remove three retaining screws no. 9 and withdraw armature plate.

Magnezo Housing
To remove magneto housing no. 10, starter has to be removed. Refer to appropriate VEHICLE SHOP MANUAL.

Unscrew retaining screws no. 11, then withdraw housing.
Generating Coil
To replace generating coil no. 12:
- Heat the armature plate to 93°C (200°F) around the screw holes to break the threadlocker bond.

Battery Charging Coil
To replace battery charging coil no. 14:
- Heat the armature plate to 93°C (200°F) around the screw holes to break the threadlocker bond.

CAUTION: Protect harness from flame.
- Remove screws no. 13.
- Uncrimp and unsolder BLACK/RED wire from coil.
- Uncrimp and unsolder YELLOW and YELLOW/BLACK wires from coil core.
- Uncrimp and unsolder ground wire (BLACK) from coil core.

CLEANING
Clean all metal components in a solvent.
CAUTION: Clean coils and magnets using only a clean cloth.
Clean crankshaft taper and threads using Loctite chisel (gasket remover) (P/N 413 708 500). Apply the product on a rag first then clean the crankshaft.
ASSEMBLY

Generating Coil
Strip end of old wire then crimp and solder on new coil.
Apply Loctite 243 (blue) (P/N 293 800 060) to screws no. 13 and install the new coil no. 12 on armature plate.
Use the magneto coil centering tool (P/N 420 876 922) and install so that it fits around armature plate before tightening screws.

CAUTION: Before reinstalling the magneto, remove the loose epoxy from harness.

Battery Charging Coil
Position new coil no. 14, crimp and solder all wires.
Prior to assembly, apply Loctite 243 (blue) (P/N 293 800 060).
Use the magneto coil centering tool (P/N 420 876 922) and install it so that it fits around armature plate before tightening screws no. 15.

Magneto Flywheel and Ring Gear
Apply Loctite 648 (green) (P/N 413 711 400) to magneto flywheel mating surface. Lay ring gear on a steel plate, then heat with a propane torch in order to install it on magneto flywheel.
Pay particular attention to position ring gear teeth chamfer side as per following illustration.

NOTE: Ensure that ring gear contacts magneto flywheel flange.
Whenever replacing either ring gear or magneto flywheel, anticorrosion spray (P/N 219 700 304) must be applied to prevent possible corrosion.
CAUTION: Always assemble magneto flywheel and ring gear prior to apply anticorrosion spray. If not done correctly, ring gear won’t contact magneto flywheel flange.
To apply anticorrosion spray proceed as follows:
NOTE: Do not spray anticorrosion spray into magneto flywheel threaded holes.

1. Clean thoroughly and degrease replacement part using a non oil base solvent.
2. Apply coating in light thin coats. Refer to the manufacturer's instructions.

Magneto Housing
Install gasket no. 16 between magneto housing no. 10 and engine crankcase.
Install magneto housing and torque screws no. 11 to 9 N\(\cdot\)m (80 lbf\(\cdot\)in).

Armature Plate
Position the armature plate on the crankcase, aligning the marks on both parts.

When reinstalling armature plate on a new crankcase housing, proceed as follows.
Find manufacturer's mark on armature plate. In line with this mark, punch another mark on adjacent crankcase lug.

Magneto Flywheel
Apply Loctite 243 (blue) (P/N 293 800 060) on crankshaft taper.
Position Woodruff key and magneto flywheel. Apply Loctite 243 (blue) (P/N 293 800 060) on nut no. 6. Install nut with lock washer no. 7 and torque to 145 N\(\cdot\)m (107 lbf\(\cdot\)ft).

CAUTION: Never use any type of impact wrench at magneto installation.

Ignition Timing
For ignition timing procedures, refer to appropriate VEHICLE SHOP MANUAL.

Magneto Housing Cover
Properly install O-ring no. 17 in magneto housing. Apply Loctite 767 (antiseize lubricant) (P/N 293 800 070) on screws no. 1, install cover and wire support no. 2. Torque screws no. 1 in a criss-cross sequence to 9 N\(\cdot\)m (80 lbf\(\cdot\)in).
TOP END

SERVICE TOOLS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>aligning tool</td>
<td>420 876 904</td>
<td>34</td>
</tr>
<tr>
<td>circlip installer</td>
<td>529 035 562</td>
<td>32</td>
</tr>
<tr>
<td>piston pin puller</td>
<td>529 035 503</td>
<td>28, 30</td>
</tr>
<tr>
<td>piston ring compressor</td>
<td>420 876 979</td>
<td>33</td>
</tr>
<tr>
<td>rubber pad</td>
<td>295 000 101</td>
<td>27</td>
</tr>
<tr>
<td>sleeves</td>
<td>529 035 542</td>
<td>28, 30</td>
</tr>
</tbody>
</table>

SERVICE PRODUCTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loctite 243 (blue)</td>
<td>293 800 060</td>
<td>34–35</td>
</tr>
<tr>
<td>Loctite 518</td>
<td>293 800 038</td>
<td>35</td>
</tr>
<tr>
<td>Molykote 111</td>
<td>413 707 000</td>
<td>34–35</td>
</tr>
</tbody>
</table>
GENERAL
The 2-stroke Rotax® engine rotates counterclockwise seen from the rear (PTO flywheel).
The 717 engine has a rotary valve to control opening and closing of the intake.

DISASSEMBLY
Cylinder Head Cover and Cylinder Head
Engine in Watercraft
If engine is left in watercraft, refer to the appropriate VEHICLE SHOP MANUAL to remove the following components:
- temperature sensor wire
- spark plug cables
- air intake silencer and support.
Proceed with ENGINE ON BENCH WORK below.

Engine on Bench Work
Remove cylinder head cover screws no. 1.
Remove cylinder head cover no. 2.
If shells, sand, salt or any other particles are present in cylinder head, clean with a vacuum cleaner.
Remove cylinder head no. 3.
If shells, sand, salt water or any other particles are present in cylinder cooling jacket, clean with a vacuum cleaner.

Exhaust Manifold
Remove 8 Allen screws no. 4 then withdraw exhaust manifold no. 5.

Cylinder
NOTE: When removing cylinders no. 6, make sure connecting rods do not hit crankcase edge.

Engine in Watercraft
If engine is left in watercraft, refer to the appropriate VEHICLE SHOP MANUAL to remove the tuned pipe.
Proceed with ENGINE ON BENCH WORK.

Engine on Bench Work
Remove cylinder head cover no. 2 and cylinder head no. 3 as explained above.
Remove exhaust manifold no. 5.

Remove cylinder screws no. 7.
Remove cylinders no. 6, while making sure connecting rods do not hit crankcase edge.

WARNING
If screws need to be heated for removal when engine is in watercraft, fuel system pressurization must be done first. Do not use open flame; use a heat gun.

NOTE: Even if only 1 cylinder needs repair, both cylinders should be lifted to allow 1-piece cylinder base gasket replacement.

Piston
NOTE: Engine features cageless piston pin bearings.
Remove cylinders no. 6 as explained above.
Bring piston no. 8 to Top Dead Center (TDC) and install the rubber pad (P/N 295 000 101) over crankcase opening. Secure with screws. Lower piston until it sits on pad.

If the other cylinder has been removed, completely cover its opening with a clean rag.
To remove circlip no. 9, insert a pointed tool in piston notch then pry it out and discard.

WARNING
Always wear safety glasses when removing piston circlips.

To extract piston pin no. 10, use the piston pin puller (P/N 529 035 503) with the sleeves (P/N 529 035 542).

NOTE: The tool cutout must be positioned toward the bottom of the piston.
Firmly hold puller and rotate handle to pull piston pin no. 10. Rotate spindle until the shoulder sleeve is flushed with the piston recess.

Loosen the extracting nut and remove puller. Remove the shoulder sleeve from piston.

Carefully remove the piston no. 8. The needles no. 11, thrust washers no. 12 and the sleeve remain in the connecting rod bore and may be used again.

Discard all gaskets and O-rings. Clean all metal components in a solvent. Clean water passages and make sure they are not clogged. Remove carbon deposits from cylinder exhaust port, cylinder head and piston dome. Clean piston ring grooves with a groove cleaner tool, or a piece of broken ring.
INSPECTION

Refer to table below to find top end engine dimension specifications. For dimension measurement procedures, refer to ENGINE MEASUREMENT.

Visually inspect all parts for corrosion damage.

Inspect pistons for damage. Light scratches can be sanded with a fine sand paper.

NOTE: When repairing a seized engine, connecting rods should be checked for straightness and crankshaft for deflection/misalignment.

Inspect plane surfaces for warpage. Small deformation can be corrected by grinding surface with a fine sand paper. Install sand paper on a surface plate and rub part against oiled sand paper.

<table>
<thead>
<tr>
<th>ENGINE MEASUREMENT</th>
<th>TOLERANCES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEW PARTS (min.) (max.)</td>
</tr>
<tr>
<td>Combustion chamber volume</td>
<td>31.2 cc</td>
</tr>
<tr>
<td>Cylinder taper</td>
<td>N.A.</td>
</tr>
<tr>
<td>Cylinder out of round</td>
<td>N.A.</td>
</tr>
<tr>
<td>Piston skirt</td>
<td>N.A.</td>
</tr>
<tr>
<td>Piston/cylinder wall clearance</td>
<td>0.10 mm (.0039 in)</td>
</tr>
<tr>
<td>Ring/piston groove clearance</td>
<td>0.025 mm (.001 in)</td>
</tr>
<tr>
<td>Ring end gap</td>
<td>0.25 mm (.010 in)</td>
</tr>
</tbody>
</table>

N.A.: NOT APPLICABLE

NOTE: Replacement cylinder sleeves are available if necessary. Also, oversize pistons of 0.25 mm (.010 in) and 0.5 mm (.020 in) are available.

ASSEMBLY

Assembly is essentially the reverse of disassembly procedures. However pay particular attention to the following.

Piston

At assembly, place the pistons no. 8 with the letters “AUS” (over an arrow on the piston dome) facing in direction of the exhaust port.

Carefully cover crankcase opening as for disassembly.

Piston Pin and Roller Bearing

To install roller bearing no. 11 and piston pin no. 10 use, piston pin puller (P/N 529 035 503) with the sleeves (P/N 529 035 542).

- Replacement bearings are held in place by a locating sleeve outside and 2 plastic cage halves inside.
- Push needle bearing together with inner halves out of the locating sleeve into the connecting rod bore.
- Replace the inner halves by the appropriate sleeve tool in the connecting rod bore.
- Insert piston pin into piston until it comes flush with inward edge of piston hub.
- Warm piston to approximately 50 - 60°C (122 - 140°F) and install it over connecting rod.

NOTE: Make sure thrust washers no. 12 are present each side of needles.

- Install the shoulder sleeve tool on the opposite side of the piston pin.
Section 02 717 ENGINE
Subsection 03 (TOP END)

TYPICAL
1. Piston pin
2. Shoulder sleeve

– Insert extractor spindle into the piston pin, screw on extracting nut.

TYPICAL
1. Puller installed on the opposite side of the piston pin
2. Tighten extracting nut

– Rotate handle to pull piston pin carefully into the piston.

Plastic Mounting Device Method
This is an alternate method when no service tool is available.
Replacement roller bearings are delivered in a convenient plastic mounting device. For installation, proceed as follows:
– Align replacement roller bearing with connecting rod bore.
– Carefully push inner plastic sleeve into connecting rod bore; outer plastic ring will release rollers.

1. Outer ring removal after inner sleeve insertion into bore

– Make sure thrust washers no. 12 are present each side of rollers.

1. Thrust washer each side

– Insert piston pin no. 10 into piston no. 8 until it comes flush with inward edge of piston hub.
1. Piston pin flush here
2. Thrust washers

Place piston over connecting rod and align bores, then gently tap piston pin with a fiber hammer to push out inner plastic ring on opposite side. Support piston from opposite side.

As necessary, pull halves of inner sleeve with long nose pliers.

Circlip

Always use new circlips no. 9.

WARNING

Always wear safety glasses when installing piston circlips.

CAUTION: Always use new circlips. At installation, take care not to deform them. Circlips must not move freely after installation. Secure circlip with its opening located at the bottom of the piston.

CAUTION: To minimize the stress on the circlips, it is important to install them as described.

To easily insert circlip into piston, use the circlip installer (P/N 529 035 562).
Cylinder Base Gasket

NOTE: The general procedure is to install a new gasket of the same thickness. However, if you do not know the gasket thickness that was installed or if a crank repair has involved replacement of connecting rods, refer to COMBUSTION CHAMBER VOLUME MEASUREMENT in ENGINE MEASUREMENT section to properly determine the required gasket thickness.

Different thicknesses of cylinder base gaskets no. 13 are used for a precise adjustment of the combustion chamber volume.

To identify gasket thickness, refer to the identification holes on the gasket.

<table>
<thead>
<tr>
<th>GASKET THICKNESS</th>
<th>IDENTIFICATION HOLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 mm (.012 in)</td>
<td>3</td>
</tr>
<tr>
<td>0.4 mm (.016 in)</td>
<td>4</td>
</tr>
<tr>
<td>0.5 mm (.020 in)</td>
<td>5</td>
</tr>
<tr>
<td>0.6 mm (.024 in)</td>
<td>6</td>
</tr>
<tr>
<td>0.8 mm (.031 in)</td>
<td>8</td>
</tr>
</tbody>
</table>

Cylinder

To easily slide cylinder no. 6 over piston no. 8, use the piston ring compressor (P/N 420 876 979).

CAUTION: The hand retaining the piston should absorb the energy to protect the connecting rod.
Section 02 717 ENGINE
Subsection 03 (TOP END)

1. Slide this edge

NOTE: Ring compressor will not fit on oversize parts.
Make sure to align ring end gap with piston locating pin. Slide tool over rings.

Slide cylinder over piston.

When reassembling cylinders to crankcase, it is important to have them properly aligned so that exhaust flanges properly match up with exhaust manifold no. 5.

The aligning tool (P/N 420 876 904) or the exhaust manifold can be used to align cylinders.

Cylinder Screw
Apply Molykote 111 (P/N 413 707 000) below the screw head.
Apply also Loctite 243 (blue) (P/N 293 800 060) on screw threads.
Install and torque screws no. 7 in a criss-cross sequence for each cylinder to 24 N\(\cdot\)m (17 lbf\(\cdot\)ft). Refer to the following illustration.
Cylinder Head
Install cylinder head gasket.
Make sure to install O-rings no. 14 around spark plug holes and O-ring no. 15 of cylinder head as shown in the following illustration.

1. O-rings
Apply Loctite 518 (P/N 293 800 038) in O-ring groove of cylinder sleeves.

Cylinder Head Cover
Install cylinder head cover no. 2.
Apply Loctite 243 (blue) (P/N 293 800 060) below head of screws no. 1.
Apply also Molykote 111 (P/N 413 707 000) on threads of screws no. 1.
Torque cylinder head screws no. 1 to 12 N•m (106 lbf•in) as per following illustrated sequence.
Repeat the procedure, retightening all screws to 24 N•m (17 lbf•ft).

Exhaust Manifold
Make sure gaskets are properly positioned prior to finalizing manifold installation.
Apply Molykote 111 (P/N 413 707 000) on threads of exhaust manifold screws no. 4.
Install exhaust manifold no. 5 and torque screws to 24 N•m (17 lbf•ft) as per following illustrated sequence.
BOTTOM END

SERVICE TOOLS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bearing heater</td>
<td>529 035 969</td>
<td>43</td>
</tr>
<tr>
<td>distance gauge</td>
<td>529 034 800</td>
<td>44</td>
</tr>
<tr>
<td>Distance ring</td>
<td>420 876 569</td>
<td>41</td>
</tr>
<tr>
<td>MAG side ring halves</td>
<td>420 276 025</td>
<td>41</td>
</tr>
<tr>
<td>Protective cap</td>
<td>420 876 557</td>
<td>41</td>
</tr>
<tr>
<td>PTO flywheel remover</td>
<td>295 000 001</td>
<td>39</td>
</tr>
<tr>
<td>PTO side ring halves</td>
<td>420 977 475</td>
<td>41</td>
</tr>
<tr>
<td>Puller</td>
<td>420 877 635</td>
<td>41</td>
</tr>
<tr>
<td>Ring</td>
<td>420 977 490</td>
<td>41</td>
</tr>
<tr>
<td>Screw M8 x 40</td>
<td>420 840 681</td>
<td>41</td>
</tr>
<tr>
<td>Screw M8 x 70</td>
<td>420 841 201</td>
<td>41</td>
</tr>
<tr>
<td>temperature indicator stick</td>
<td>529 035 970</td>
<td>44</td>
</tr>
</tbody>
</table>

SERVICE PRODUCTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>chisel gasket remover</td>
<td>413 708 500</td>
<td>42</td>
</tr>
<tr>
<td>Loctite 518</td>
<td>293 800 038</td>
<td>46</td>
</tr>
<tr>
<td>Loctite 5910</td>
<td>293 800 081</td>
<td>45</td>
</tr>
<tr>
<td>Loctite 767 (antiseize lubricant)</td>
<td>293 800 070</td>
<td>44, 46</td>
</tr>
<tr>
<td>Molykote 111</td>
<td>413 707 000</td>
<td>45-46</td>
</tr>
<tr>
<td>pulley flange cleaner</td>
<td>413 711 809</td>
<td>41</td>
</tr>
</tbody>
</table>
GENERAL

Engine has to be removed from watercraft to take apart bottom end. Refer to appropriate VEHICLE SHOP MANUAL.

Engine top end has to be disassembled to take apart bottom end. Refer to TOP END section in this manual.

NOTE: Crankcase halves are factory matched and therefore, are not interchangeable or available as single halves.

DISASSEMBLY

PTO Flywheel

To remove PTO flywheel no. 1, the crankshaft must be locked. Refer to MAGNETO SYSTEM and follow the procedure to lock the magneto flywheel.

PTO flywheel is loosen using the PTO flywheel remover (P/N 295 000 001).

Using a suitable wrench or socket with a breaker bar, unscrew PTO flywheel COUNTERCLOCKWISE when facing it and hold extension handle locking the magneto flywheel.

Crankshaft End Seals

If crankshaft end seals no. 5 have to be replaced, bottom end must be opened. Refer to CRANKCASE and CRANKSHAFT END BEARINGS below.

Crankcase

Before opening crankcase no. 2, remove the following parts:
- engine supports
- magneto flywheel and housing, refer to MAGNETO SYSTEM section
- starter, refer to appropriate VEHICLE SHOP MANUAL
- rotary valve cover and valve, refer to ROTARY VALVE section
- engine top end, refer to TOP END section.

Put engine on a stand. Loosen crankcase screws.

1. M10 x 73.5 flanged screws
2. M8 x 68.5 flanged screws
3. M8 x 45 socket head screws

Put engine back on a support. Insert a pry bar between crankcase lugs to separate halves.

CAUTION: Be careful to precision machined surfaces.

Remove crankshaft no. 3.

Crankshaft End Bearings

NOTE: Do not needlessly remove crankshaft bearings no. 4.

Take apart crankcase as per procedure above.

Remove end seals.

To remove end bearings no. 4 from crankshaft no. 3, use the following tools.
1. Puller (P/N 420 877 635)
2. Protective cap (P/N 420 876 557)
3. Distance ring (P/N 420 876 568), MAG side only
4. Ring (P/N 420 977 490), both sides
5. MAG side ring halves (P/N 420 276 025)
6. PTO side ring halves (P/N 420 977 475)
7. Screw M8 x 40 (P/N 420 840 681)
8. Screw M8 x 70 (P/N 420 841 201)

NOTE: To facilitate ring or distance ring installation, lubricate their inside diameters.

CLEANING

General
Discard all oil seals, gaskets, O-rings and sealing rings.
Clean oil passages and make sure they are not clogged.
Clean all metal components in a solvent.

Crankshaft
Clean crankshaft end with sand paper no.180 and remove all residue using pulley flange cleaner (P/N 413 711 809).

TYPICAL
1. Removing crankshaft bearing

As an alternate method, use a bearing extractor such as Proto no. 4332 and a press to remove two bearings at a time.
Crankcase mating surfaces are best cleaned using a combination of the chisel gasket remover (P/N 413 708 500) and a brass brush. Brush a first pass in one direction then make the final brushing perpendicularly (90°) to the first pass cross (hatch).

CAUTION: Never use a sharp object to scrape away old sealant as score marks incurred are detrimental to crankcase sealing.

Finish the cleaning with acetone.

CAUTION: Be careful not to spray cleaner on the painted surface of the engine. Do not wipe with rags. Use a new clean hand towel only.

INSPECTION

Refer to table below to find bottom end engine dimension specifications. For dimension measurement procedures, refer to ENGINE MEASUREMENT.
Section 02 717 ENGINE
Subsection 04 (BOTTOM END)

<table>
<thead>
<tr>
<th>ENGINE MEASUREMENT</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New parts</td>
</tr>
<tr>
<td></td>
<td>Min</td>
</tr>
<tr>
<td>Crankshaft deflection</td>
<td>MAG</td>
</tr>
<tr>
<td></td>
<td>PTO</td>
</tr>
<tr>
<td>Connecting rod axial play</td>
<td>0.311 mm (.012 in)</td>
</tr>
</tbody>
</table>

Crankcase

Inspect plane surfaces for warpage. Small deformation can be corrected by grinding surface with a fine sandpaper. Install sandpaper on a surface plate and rub part against oiled sandpaper.

Bearings

Inspect crankshaft bearings no. 4. Check for corrosion, scoring, pitting, chipping or other evidence of wear. Make sure plastic cage is not melted. Rotate and make sure they turn smoothly.

ASSEMBLY

Assembly is essentially the reverse of disassembly procedures. However pay particular attention to the following.

NOTE: It is recommended to spray injection oil on all moving parts when reassembling the engine.

Crankshaft End Bearings

Heat up the bearing(s) using the bearing heater (P/N 529 035 969). This will expand bearings and ease installation.

CAUTION: Bearing should not be heated to more than 80°C (176°F). Do not heat bearing with direct flame or heat gun or heated oil. Inappropriate heating procedure(s) may cause inner seal failure.

Turn bearing(s) several times during heating process for heating it (them) properly.

NOTE: Normally it takes approximately 10 minutes to heat up a bearing so in the event of replacing bearing, it’s recommended to start the bearing heating process prior to removal operation. Two bearings can be heated at the same time on one bearing heater.
Touch the inner race of the bearing with the temperature indicator stick (P/N 529 035 970). Stick will liquefy when the bearing reach the proper temperature.

Slide in the inner bearing. Push bearing to end position.
Install the retaining disk.
To properly position the outer bearing(s), the distance gauge (P/N 529 034 800) must be temporarily installed against the inner bearing. Slide the outer bearing until stopped by the distance gauge, then remove the distance gauge.

WARNING
Do not touch heated bearing with bare handle. Wear heat resisting gloves before handling the heated bearing(s).

Smear Loctite 767 (antiseize lubricant) (P/N 293 800 070) on part of crankshaft where bearing fits.

Crankcase
NOTE: Rotary valve shaft must be installed in crankcase before closing halves.
CAUTION: Before joining crankcase halves, make sure that crankshaft gear is well engaged with rotary valve shaft gear.

Crankcase Sealant Application
IMPORTANT: When beginning the application of the crankcase sealant, the assembly and the first torquing should be done within 10 minutes. It is suggested to have all you need on hand to save time.
NOTE: It is recommended to apply this specific sealant as described here to get an uniform application without lumps. If you do not use the roller method, you may use your finger to uniformly distribute the sealant.

Use the Loctite 5910 (P/N 293 800 081) on mating surfaces.

CAUTION: Do not use other products to seal crankcase. Do not use an activator with the Loctite 5910. Using other products or non silicone-based sealant over a previously sealed crankcase with Loctite 5910 will lead to poor adhesion and possibly a leaking crankcase. Even after cleaning, the Loctite 5910 would leave incompatible microscopic particles.

Use a plexiglass plate and apply some sealant on it. Use a soft rubber roller (50 - 75 mm (2 - 3 in)) (available in arts products suppliers) and roll the sealant to get a thin uniform coat on the plate (spread as necessary). When ready, apply the sealant on crankcase mating surfaces.

Do not apply in excess as it will spread out inside crankcase.

Crankshaft Seals

When installing seals no. 5, apply a light coat of Molykote 111 (P/N 413 707 000) on seal lips.

Crankshaft

When installing crankshaft in crankcase, make sure drive pins no. 6 of bearings are properly installed in crankcase recesses.

Crankcase Halves

Assemble crankcase halves.

NOTE: Temporarily install armature plate to align crankcase halves with each other.
Crankcase Screws

Apply Loctite 518 (P/N 293 800 038) on screw threads and Molykote 111 (P/N 413 707 000) below head screws.

Torque crankcase screws no. 7 and no. 9 to 24 N•m (17 lbf•ft) as per following illustrated sequence.

Torque 2 M10 crankcase screws no. 8 to 40 N•m (30 lbf•ft).

Oil Fittings

If inlet and outlet oil fittings no. 11 of rotary valve shaft have been removed from crankcase, reinstall them with their end pointing toward ignition housing. Apply Loctite 518 (P/N 293 800 038) on threads of fittings.

Studs

At assembly in crankcase, apply Loctite 518 (P/N 293 800 038) on threads of studs no. 10. Torque to 10 N•m (89 lbf•in).

PTO Flywheel

Apply Loctite 767 (antiseize lubricant) (P/N 293 800 070) to crankshaft threads.

Using the same tools as for disassembly procedure, torque PTO flywheel to 110 N•m (81 lbf•ft).
ROTARY VALVE

SERVICE TOOLS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>degree wheel</td>
<td>529 035 607</td>
<td>55</td>
</tr>
<tr>
<td>puller</td>
<td>420 876 488</td>
<td>49</td>
</tr>
<tr>
<td>pusher</td>
<td>420 876 501</td>
<td>51</td>
</tr>
<tr>
<td>pusher</td>
<td>420 876 605</td>
<td>52</td>
</tr>
<tr>
<td>TDC gauge</td>
<td>295 000 143</td>
<td>55</td>
</tr>
</tbody>
</table>

SERVICE PRODUCTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loctite 243 (blue)</td>
<td>293 800 060</td>
<td>56</td>
</tr>
<tr>
<td>Molykote 111</td>
<td>413 707 000</td>
<td>52</td>
</tr>
<tr>
<td>XP-S mineral injection oil</td>
<td>413 802 900</td>
<td>56</td>
</tr>
</tbody>
</table>
GENERAL

The clearance of rotary valve cover or rotary valve shaft gear backlash can be performed without taking apart engine.

However engine must be disassembled to work on rotary valve shaft/components.

INSPECTION (ASSEMBLED ENGINE)

Rotary Valve/Cover Clearance

Remove air intake silencer and carburetor. Refer to appropriate VEHICLE SHOP MANUAL.

Refer to table below to find dimension specifications. For measurement procedures, refer to ENGINE MEASUREMENT section.

<table>
<thead>
<tr>
<th>ENGINE MEASUREMENT</th>
<th>TOLERANCES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEW PARTS (min.) (max.)</td>
</tr>
<tr>
<td>Rotary valve/cover clearance</td>
<td>0.25 mm (0.010 in) 0.3 mm (0.014 in)</td>
</tr>
</tbody>
</table>

NOTE: If the rotary valve/cover clearance is too small, this could create an overheating situation and if the clearance is too high, this could create a hard starting situation.

Rotary Valve Shaft Gear Backlash

Verify rotary valve shaft gear backlash as follows:

Remove PTO flywheel guard.

Remove spark plugs, rotary valve cover and valve. Manually feel backlash at one position, then turn crankshaft about 1/8 turn and recheck. Continue this way to complete one revolution. Backlash must be even at all positions. Otherwise overhaul engine to find which part is faulty (gear, rotary valve shaft or crankshaft with excessive deflection).

DISASSEMBLY

Rotary Valve Cover

Remove air intake silencer. Refer to appropriate VEHICLE SHOP MANUAL.

Unscrew 4 retaining screws no. 2 and withdraw rotary valve cover no. 1 and rotary valve no. 13.

To remove rotary valve shaft assembly, the engine must be removed from watercraft (refer to appropriate VEHICLE SHOP MANUAL).

Open bottom end and remove crankshaft (refer to BOTTOM END section).

First remove rotary valve cover and valve then remove snap ring no. 4 from crankcase.

Place puller over rotary valve shaft end and screw on puller bolt into shaft. While retaining bolt with a wrench, turn puller nut CLOCKWISE until shaft comes out.
Section 02 717 ENGINE
Subsection 05 (ROTARY VALVE)

Shaft Bearing
To remove bearing no. 8 use a bearing extractor such as Snap-on no. CJ-950 (or equivalent) as illustrated. Slide off distance sleeve no. 14, remove snap ring no. 7 and washer no. 15 then press shaft out.

End Bearing
CAUTION: Do not remove plug against bearing in upper crankcase half.

End bearing no. 9 can be easily removed from upper crankcase half using the following suggested tool (or equivalent):
- Snap-on hammer puller including:
 - handle CJ93-1
 - hammer CJ125-6
 - claws CJ93-4.
Close puller claws so that they can be inserted in end bearing. Holding claws, turn puller shaft clockwise so that claws open and become firmly tight against bearing.

Slide puller hammer outwards and tap puller end. Retighten claws as necessary to always maintain them tight against bearing. Continue this way until bearing completely comes out.

CLEANING

Discard all seals and O-rings.

Clean all metal components in a solvent.

Clean oil passages and make sure they are not clogged.

Clean rotary valve shaft and inside of distance sleeve no. 14.

INSPECTION (DISASSEMBLED ENGINE)

Rotary Valve Cover

Inspect rotary valve cover no. 1 for warpage. Small deformation can be corrected by surfacing with fine sand paper on a surface plate. Surface part against oiled sand paper.

Rotary Valve Shaft

Refer to table below to find dimension specifications. For measurement procedures, refer to ENGINE MEASUREMENT section.

<table>
<thead>
<tr>
<th>ENGINE MEASUREMENT</th>
<th>TOLERANCES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEW PARTS</td>
</tr>
<tr>
<td></td>
<td>(min.)</td>
</tr>
<tr>
<td></td>
<td>(max.)</td>
</tr>
<tr>
<td>Rotary valve shaft</td>
<td>N.A.</td>
</tr>
<tr>
<td>deflection</td>
<td>0.08 mm (.003 in)</td>
</tr>
</tbody>
</table>

Gear

Visually check gear wear pattern. It should be even on tooth length all around. Otherwise it could indicate a bent shaft, check deflection. Replace gear if damaged.

Check for presence of brass filings in gear housing.

Bearings

Inspect bearings no. 8 and no. 9. Check for scoring, pitting, chipping or other evidence of wear. Make sure plastic cage (on bigger bearing) is not melted. Rotate them and make sure they turn smoothly.

ASSEMBLY

Assembly is essentially the reverse of disassembly procedures. However pay particular attention to the following.

End Bearing

To install end bearing no. 9 in crankcase, use the pusher (P/N 420 876 501).
Section 02 717 ENGINE
Subsection 05 (ROTARY VALVE)

1. Shield side (toward gear)

Push bearing until it stops on its seat.

Seal

Apply Molykote 111 (P/N 413 707 000) on seal lips. Position seal no. 11 with shielded portion against shaft splines.

Shaft Bearing

Install ball bearing as illustrated.

CAUTION: Crankcase halves must be separated and crankshaft must not be present to install rotary valve shaft assembly in crankcase.

To install rotary valve shaft in crankcase, use the pusher (P/N 420 876 605).
1. Pusher

Push shaft until its stops on bearing seat.

1. Rotary valve shaft
2. Push shaft until it stops

Snap Ring
Position snap ring no. 4 so that its sharp edge faces outwards.

Rotary Valve
The rotary valve no. 13 controls the opening and closing of the inlet ports. Therefore its efficiency will depend on the precision of its installation.

IDENTIFICATION OF THE ROTARY VALVE

<table>
<thead>
<tr>
<th>ENGINE</th>
<th>ROTARY VALVE P/N</th>
<th>DURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>717</td>
<td>420 924 502</td>
<td>159°</td>
</tr>
</tbody>
</table>

There is no identification code on the valve. To find out the duration, place an angle finder on the valve and measure the valve cut-out angle or use the following template.
ROTARY VALVE TIMING

CAUTION: Never use the ridge molded in crank case as a timing mark.

The degree wheel (P/N 529 035 607) and the TDC gauge (P/N 295 000 143) are required to measure rotary valve opening and closing angles in relation with MAG side piston.

Rotary valve must be set so that timing occurs as follows:

<table>
<thead>
<tr>
<th>ENGINE</th>
<th>TIMING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OPENING BTDC</td>
</tr>
<tr>
<td>717</td>
<td>147° ± 5</td>
</tr>
</tbody>
</table>

Timing Procedure

The following timing procedure example uses these specifications:

OPENING: 147° BTDC
CLOSING: 65° ATDC

Proceed as follows:

- Turning crankshaft, bring MAG side piston to Top Dead Center using the TDC gauge.

NOTE: For opening mark, first align 360° line of degree wheel with BOTTOM of MAG side inlet port. Then, find 147° line on inner scale of degree wheel and mark crankcase at this point.

- For closing mark, first align 360° line of degree wheel with TOP of MAG side inlet port. Then, find 65° line on outer scale of degree wheel and mark crankcase at this point.
CLOSING MARK
Step 1: Top of MAG inlet port. Align 360° line of degree wheel
Step 2: Find 65° on outer scale of degree wheel and mark here

– Remove degree wheel.
– Position rotary valve on shaft splines to have edges as close as possible to these marks with the MAG piston at TDC.

NOTE: Rotary valve is asymmetrical. Therefore, try flipping it over then reinstall on splines to obtain best installation position.

Apply XP-S mineral injection oil (P/N 413 802 900) on rotary valve before reassembling rotary valve cover.
– Remove TDC gauge.

Rotary Valve Cover
Install O-ring no. 12 and rotary valve cover no. 1.
Apply Loctite 243 (blue) (P/N 293 800 060) on threads of rotary valve cover screws no. 2 then torque them to 20 N•m (15 lbf•ft) in a criss-cross sequence.
TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>ENGINE</th>
<th>GTI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine type</td>
<td>ROTAX 717, 2-stroke</td>
</tr>
<tr>
<td>Induction type</td>
<td>Rotary valve</td>
</tr>
<tr>
<td>Exhaust system</td>
<td>Type: Water cooled, water injected</td>
</tr>
<tr>
<td></td>
<td>Water injection fitting (head): 3.5 mm (.139 in)</td>
</tr>
<tr>
<td></td>
<td>Water injection fitting (cone): 3.5 mm (.139 in)</td>
</tr>
<tr>
<td>Starting system</td>
<td>Electric start</td>
</tr>
<tr>
<td>Lubrication</td>
<td>Fuel/oil mixture: VROI (Variable Rate Oil Injection)</td>
</tr>
<tr>
<td></td>
<td>Oil injection pump: Gear driven</td>
</tr>
<tr>
<td></td>
<td>Oil injection type: XP-S™ synthetic 2-stroke or XP-S™ synthetic blend or XP-S™ mineral injection oil</td>
</tr>
<tr>
<td>Number of cylinders</td>
<td>2</td>
</tr>
<tr>
<td>Bore</td>
<td>Standard: 82 mm (3.228 in)</td>
</tr>
<tr>
<td></td>
<td>First oversize: 82.25 mm (3.238 in)</td>
</tr>
<tr>
<td></td>
<td>Second oversize: 82.50 mm (3.248 in)</td>
</tr>
<tr>
<td>Stroke</td>
<td>68 mm (2.677 in)</td>
</tr>
<tr>
<td>Displacement</td>
<td>718.2 cm³ (43.81 in³)</td>
</tr>
<tr>
<td>Corrected compression ratio</td>
<td>6.2:1</td>
</tr>
<tr>
<td>Cylinder head volume</td>
<td>42.4 ± 0.4 cc</td>
</tr>
<tr>
<td>Cylinder head warpage (maximum)</td>
<td>0.05 mm (.002 in)</td>
</tr>
<tr>
<td>Piston ring type and quantity</td>
<td>1 semi-trapez — 1 rectangular</td>
</tr>
<tr>
<td>Ring end gap</td>
<td>New: 0.25 - 0.40 mm (.010 - .016 in)</td>
</tr>
<tr>
<td></td>
<td>Wear limit: 1.00 mm (.039 in)</td>
</tr>
<tr>
<td>Ring/piston groove clearance</td>
<td>New: 0.025 - 0.070 mm (.001 - .003 in)</td>
</tr>
<tr>
<td></td>
<td>Wear limit: 0.2 mm (.008 in)</td>
</tr>
<tr>
<td>Piston/cylinder wall clearance</td>
<td>New (minimum): 0.10 mm (.004 in)</td>
</tr>
<tr>
<td></td>
<td>Wear limit: 0.20 mm (.008 in)</td>
</tr>
<tr>
<td>Cylinder taper (maximum)</td>
<td>0.10 mm (.004 in)</td>
</tr>
<tr>
<td>Cylinder out of round (maximum)</td>
<td>0.080 mm (.003 in)</td>
</tr>
<tr>
<td>Connecting rod big end axial play</td>
<td>New: 0.311 - 0.677 mm (.012 - .027 in)</td>
</tr>
<tr>
<td></td>
<td>Wear limit: 1.2 mm (.047 in)</td>
</tr>
<tr>
<td>Crankshaft deflection</td>
<td>MAG: 0.050 mm (.002 in) PTO: 0.030 mm (.001 in)</td>
</tr>
<tr>
<td>Rotary valve timing</td>
<td>Opening: 147° ± 5 BTDC</td>
</tr>
<tr>
<td></td>
<td>Closing: 65.5° ± 5 ATDC</td>
</tr>
<tr>
<td>Rotary valve duration</td>
<td>159°</td>
</tr>
<tr>
<td>Rotary valve/cover clearance</td>
<td>0.25 - 0.35 mm (.010 - .014 in)</td>
</tr>
<tr>
<td>Connecting rod/crankshaft pin radial clearance</td>
<td>New: 0.020 - 0.033 mm (.0008 - .0013 in)</td>
</tr>
<tr>
<td></td>
<td>Wear limit: 0.050 mm (.002 in)</td>
</tr>
<tr>
<td>Connecting rod/piston pin radial clearance</td>
<td>New: 0.020 - 0.033 mm (.0008 - .0013 in)</td>
</tr>
<tr>
<td></td>
<td>Wear limit: 0.05 mm (.002 in)</td>
</tr>
</tbody>
</table>

ADDITIONAL INFORMATION:
LEAK TEST

SERVICE TOOLS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>engine leak test kit</td>
<td>295 500 352</td>
<td>59–60</td>
</tr>
<tr>
<td>small hose pincher</td>
<td>295 000 076</td>
<td>60–61</td>
</tr>
<tr>
<td>supplementary engine leak test kit</td>
<td>295 500 780</td>
<td>59–60</td>
</tr>
</tbody>
</table>

GENERAL

An engine leak test kit (P/N 295 500 352) and a supplementary engine leak test kit (P/N 295 500 780) are available to help diagnose engine problems such as engine seizure, poor performance, oil leakage, etc.

Before disassembling any components of the engine, it is important to perform a leakage test to determine which part is defective.

It is also very important after servicing the engine, even for a complete engine rebuilt, to perform another leakage test; at this stage, it may avoid further engine problems and minimizing the risk of having to remove and reinstall the engine again.

Static bench testing is the most effective way to conduct a leakage test. Inboard testing does not allow complete access to, and observation of all engine surfaces and should be avoided whenever possible.

When installing hoses of the engine leak test kit or supplementary engine leak test kit, use the collars provided in the kit to ensure a proper sealing.

When pressurizing the engine, first confirm that the components of the engine leak test kit or supplementary engine leak test kit are not leaking by spraying a solution of soapy water on all hoses, connections, fittings, plates, etc. If there is a leak, bubbles will indicate leak location.

Three areas of the engine will be tested in sequence as per the diagnostic flow chart (see the end of this subsection).
1. Engine Cooling System.
2. Bottom End and Top End.
3. Rotary Valve Shaft.

NOTE: If a leak is found, it is important to continue testing as there is the possibility of having more than one leak. Continue pumping to compensate for the air lost to find another leak.

TESTING PROCEDURE

Using the appropriate VEHICLE SHOP MANUAL, remove the engine from the vehicle and place it on a bench.
Engine Cooling System
Remove the exhaust manifold gasket and ensure the surface is clean.
Install the appropriate exhaust manifold plate from the engine leak test kit (P/N 295 500 352). Tighten plate using fasteners provided in the kit.
NOTE: Do not torque plate excessively.
Install a small hose pincher (P/N 295 000 076) on engine drain hose.

Use hoses provided in the kit and install them on the engine.
Install pump using reducer and appropriate tube(s) as necessary.

Activate pump and pressurize engine cooling system to 34 kPa (5 PSI).
Wait 3 minutes and check if pressure drops; if so, verify all testing components.
- If kit components are not leaking and pressure drops, verify all external jointed surfaces, temperature sensor and the O-ring between the spark plug area and the engine cylinder head cover. If none of these components are leaking, there is an internal leak and it can be detected with BOTTOM END AND TOP END testing.

Bottom End and Top End
Make sure the surface of the rotary valve cover is clean.
Install the intake plates with fasteners from the kit and tighten adequately.
NOTE: Use the intake and exhaust plates included in the supplementary engine leak test kit (P/N 295 500 780).
Remove the RAVE valves and gaskets.
Install the RAVE valve plates with fasteners from the kit and tighten adequately.
NOTE: On RAVE system, the boot and O-ring can be checked for leakage with the valve in place. Simply remove the cover to expose the parts.
Make sure the spark plugs are installed and tightened.
Block pulse hose using a small hose pincher (P/N 295 000 076).
NOTE: Do not block the rotary valve shaft hoses.
Install pump to the exhaust plate fitting.

Activate pump and pressurize engine to 34 kPa (5 PSI).

CAUTION: Do not exceed this pressure.

Wait 3 minutes and check if pressure drops; if so, verify all testing components.

If kit components are not leaking, verify engine jointed surfaces as per following areas:
- spark plugs
- cylinder head gasket
- cylinder base gasket
- crankcase halves
- rotary valve cover
- engine plugs
- exhaust manifold
- oil injection pump.

Check also small oil injection pump lines and fittings; check for air bubbles or oil column going toward pump, which indicate a defective check valve.

If the above mentioned components are not leaking, block both oil hoses of the rotary valve shaft using a small hose pincher (P/N 295 000 076) on each.

NOTE: If leakage stops at this point, proceed with ROTARY VALVE SHAFT testing.

If there is still some leakage, remove the PTO fly-wheel to verify outer seal.

If no leak is found on the PTO side outer seal, remove magneto flywheel and verify crankshaft outer seals.

Proceed with the ROTARY VALVE SHAFT testing if the crankshaft outer seals are not leaking.

Rotary Valve Shaft

NOTE: It is mandatory to drain the injection oil from the rotary valve shaft.

Block oil return hose of the rotary valve shaft with a hose pincher.

Install pump with reducer and nipple to the oil supply hose of the rotary valve shaft.

Activate pump and pressurize to 34 kPa (5 PSI).

Check plug of the rotary valve shaft in crankcase.
Remove PTO side spark plug. If pressure drops, it indicates a defective PTO side crankshaft inner seal or crankcase is not sealed correctly.

Remove MAG side spark plug. If pressure drops, it indicates a defective MAG side crankshaft inner seal or crankcase is not sealed correctly.

If the above mentioned components are not leaking and there is a pressure drops, remove the rotary valve cover. Check the seal of the rotary valve shaft.

If the rotary valve shaft is not leaking, it could indicate a defective engine casting. Disassemble engine and carefully check for defects in castings. Pay attention to tapped holes which may go through sealed areas of engine and thus lead to leakage.
ENGINE LEAKAGE DIAGNOSTIC FLOW CHART

1. **PRESSURIZE ENGINE COOLING SYSTEM**
 - **IS SYSTEM LEAKING?**
 - **YES**
 - **CHECK TESTING KIT**
 - **NO**
 - **PRESSURIZE ENGINE**
 - **IS ENGINE LEAKING?**
 - **YES**
 - **CHECK TESTING KIT**
 - **NO**
 - **PRESSURIZE ROTARY VALVE GEAR RESERVOIR IN EXHAUST**

2. **PRESSURIZE ROTARY VALVE GEAR RESERVOIR IN EXHAUST**
 - **IS RESERVOIR LEAKING?**
 - **YES**
 - **CHECK TESTING KIT**
 - **NO**
 - **RECHECK ENGINE SEALING**

3. **CHECK SMALL OIL LINES OF INJECTION PUMP**
 - **ANY LEAK FOUND?**
 - **YES**
 - **REPLACE GASKET O-RING, NO SEAL LEAKING AREA**
 - **NO**
 - **REPLACE CHECK VALVES/UNNECESSARY**

4. **PRESSURIZE ROTARY VALVE GEAR RESERVOIR IN EXHAUST**
 - **IS RESERVOIR LEAKING?**
 - **YES**
 - **REPLACE DEFECTIVE SEALS**
 - **NO**
 - **RECHECK ENGINE SEALING**

5. **UNSEAL PTO CYLINDER AND MAIN CYLINDER SEPARATELY TO REMOVAL THE APPROPRIATE SPARK PLUG**
 - **IS RESERVOIR LEAKING?**
 - **YES**
 - **REPLACE DEFECTIVE SEALS**
 - **NO**
 - **RECHECK ENGINE SEALING**

6. **CHECK LEAKAGE IN ROTARY VALVE SHAFT/DRAINAGE PUS**
 - **ANY LEAK FOUND?**
 - **YES**
 - **REPLACE OIL SEAL OF ROTARY VALVE SHAFT END OR REPLACE CAP**
 - **NO**
 - **REPLACE DEFECTIVE SEAL**

7. **CAREFULLY INSPECT ENGINE CASTINGS, PARTICULARLY THE THREADED HOLE AREAS**
 - **ANY LEAK FOUND?**
 - **YES**
 - **REPLACE DEFECTIVE PARTS**
 - **NO**
 - **ENGINE IS PERFECTLY SEALED INTERNALLY**

www.SeaDooManuals.net
MAGNETO SYSTEM

SERVICE TOOLS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>crankshaft protector</td>
<td>420 876 557</td>
<td>67</td>
</tr>
<tr>
<td>installer handle</td>
<td>420 877 650</td>
<td>69</td>
</tr>
<tr>
<td>magneto puller</td>
<td>420 976 235</td>
<td>67</td>
</tr>
<tr>
<td>oil seal pusher</td>
<td>420 877 740</td>
<td>69</td>
</tr>
<tr>
<td>ring gear locking tool</td>
<td>529 035 846</td>
<td>67</td>
</tr>
</tbody>
</table>

SERVICE PRODUCTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>dielectric grease</td>
<td>293 550 004</td>
<td>70</td>
</tr>
<tr>
<td>Loctite 243 (blue)</td>
<td>293 800 060</td>
<td>69</td>
</tr>
<tr>
<td>Loctite 767 (antiseize lubricant)</td>
<td>293 800 070</td>
<td>69–70</td>
</tr>
<tr>
<td>Molykote 111</td>
<td>413 707 000</td>
<td>69–70</td>
</tr>
<tr>
<td>pulley flange cleaner</td>
<td>413 711 809</td>
<td>69</td>
</tr>
</tbody>
</table>
DISASSEMBLY
NOTE: The magneto system can be disassembled without removing the engine from the watercraft.

Magneto Housing Cover
Disconnect water hoses from heat exchanger cover.
Loosen magneto cover screws no. 1. Remove magneto cover no. 2.

Remove oil pump shaft from magneto rotor nut.

Rotor and Ring Gear
NOTE: Crankshaft can also be locked by using the PTO flywheel extractor tool. For procedure, refer to BOTTOM END.
Remove crankshaft position sensor no. 3.
Lock ring gear no. 4 using the ring gear locking tool (P/N 529 035 846).

Using a suitable socket, unscrew retaining nut no. 5 of magneto rotor COUNTERCLOCKWISE when facing it.
Remove the ring gear locking tool.
Insert the crankshaft protector (P/N 420 876 557) to outer end of crankshaft and fully thread the magneto puller (P/N 420 976 235) in magneto rotor no. 6.
TYPICAL
1. Puller

Tighten puller screw and at the same time, tap on screw head using a hammer to release magneto rotor from its taper.

Magneto Housing
To remove magneto housing no. 7, starter has to be removed. Refer to STARTING SYSTEM.
Unscrew retaining screws no. 8, then withdraw housing.

Stator Assembly
Remove holding plate no. 9 and withdraw plug from cover.
Unscrew bolts no. 10 and remove stator no. 11 from magneto cover.

CLEANING
Clean all metal components in a solvent.
CAUTION: Clean coils and magnets using only a clean cloth.
Clean crankshaft taper and threads using pulley flange cleaner (P/N 413 711 809). Apply the pulley flange cleaner (P/N 413 711 809) on a rag first then clean the crankshaft.

ASSEMBLY

Stator

Install the stator no. 11 in magneto housing cover no. 2 and torque screws no. 20 to 9 N•m (80 lbf•in). Apply Loctite 243 (blue) (P/N 293 800 060) on screw threads.

Install wiring harness bracket no. 9 of stator and torque screws no. 12 to 4 N•m (35 lbf•in). Apply Loctite 767 (antiseize lubricant) (P/N 293 800 070) on screw threads.

Magneto Housing

To install oil seal no. 13 of magneto housing no. 7, use the oil seal pusher (P/N 420 877 740) and the installer handle (P/N 420 877 650).

CAUTION: Never use any type of impact wrench at magneto installation.

Apply Molykote 111 (P/N 413 707 000) on oil seal lips.

Install gasket no. 14 between magneto housing and engine crankcase.

Install magneto housing. Apply Loctite 243 (blue) (P/N 293 800 060) on threads of housing screws no. 8 and torque them to 9 N•m (80 lbf•in).

Rotor and Ring Gear

Apply Loctite 243 (blue) (P/N 293 800 060) on crankshaft taper.

Install ring gear on crankshaft.

Apply Loctite 243 (blue) (P/N 293 800 060) on nut no. 5. Install nut with lock washer no. 15 and torque to 120 N•m (89 lbf•ft).

CAUTION: Never use any type of impact wrench at magneto installation.
Crankshaft Position Sensor

Install crankshaft position sensor no. 3 on magneto housing. Apply Molykote 111 (P/N 413 707 000) on its O-ring.

Apply Loctite 767 (antiseize lubricant) (P/N 293 800 070) on screw threads then torque it to 9 N•m (80 lbf•in).

NOTE: The crankshaft position sensor is not adjustable.

Cover

Before installing cover, make sure oil pump shaft is properly positioned. Apply Loctite 767 (antiseize lubricant) (P/N 293 800 070) to the end of shaft.

Before installation, properly install O-ring no. 16 in engine magneto cover no. 2.

Apply Loctite 767 (antiseize lubricant) (P/N 293 800 070) on screws no. 1. Torque screws in a criss-cross sequence to 9 N•m (80 lbf•in).

Apply dielectric grease (P/N 293 550 004) on electrical connections.
TOP END

SERVICE TOOLS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>circlip installer</td>
<td>529 035 562</td>
<td>83</td>
</tr>
<tr>
<td>piston pin puller</td>
<td>529 035 503</td>
<td>78, 81</td>
</tr>
<tr>
<td>piston ring compressor</td>
<td>420 876 979</td>
<td>84</td>
</tr>
<tr>
<td>rubber pad</td>
<td>295 000 101</td>
<td>77</td>
</tr>
<tr>
<td>set of sleeves</td>
<td>529 035 542</td>
<td>78, 81</td>
</tr>
</tbody>
</table>

SERVICE PRODUCTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loctite 243 (blue)</td>
<td>293 800 060</td>
<td>85</td>
</tr>
<tr>
<td>Loctite 518</td>
<td>293 800 038</td>
<td>85–86</td>
</tr>
<tr>
<td>Molykote 111</td>
<td>413 707 000</td>
<td>85–86</td>
</tr>
</tbody>
</table>
Section 03 787 RFI ENGINE
Subsection 03 (TOP END)
GENERAL

The 2-stroke ROTAX engine rotates counterclockwise seen from the rear (PTO flywheel).

The 787 RFI engine has a rotary valve to control opening and closing of the intake and it is also equipped with the Rotax Adjustable Variable Exhaust (RAVE) system.

RAVE System
(Rotax Adjustable Variable Exhaust)

BASIC OPERATION

The RAVE valves change the height of the exhaust port. The RAVE valve solenoid, which is controlled by the Engine Control Module (ECM), allows positive crankcase pressure to inflate the bellows and open the RAVE valves.

On 787 RFI engine, the RAVE valves are controlled by the ECM.

To open the RAVE valves, the ECM activates a solenoid which directs the positive pressure from engine crankcase to the valves.

TYPICAL

1. Solenoid
2. Pressure hose from crankcase
3. To atmospheric pressure

NOTE: A check valve on the pressure line eliminates the negative pressure from the crankcase.

To close the RAVE valves, the ECM deactivates the solenoid which blocks the crankcase positive pressure. The RAVE valves are opened to the atmosphere.

ADJUSTMENT

On top of the RAVE, there is a red plastic adjustment knob. Turning the adjustment in or out changes the preload on the return spring which, in turn, will change the RPM at which the RAVE valve opens and closes.
MAINTENANCE
There are no wear parts anywhere in the system and there are no adjustments to be periodical-ly checked. The only possible maintenance re-quired would be cleaning of carbon deposits from the guillotine slide. Cleaning intervals would de-pend upon the user’s riding style and the quality of the oil used. We suggest annual cleaning of the valve. If a customer uses a lower than recom-mended quality oil, more frequent cleaning may be required.

No special solvents or cleaners are required when cleaning the valve.

BORING PRECAUTION
In its stock configuration the RAVE valve guillo-tine has a minimum of 0.5 mm (.020 in) clearance to the cylinder bore measured at the center line of the cylinder. This is the minimum production clearance.

There is only a first oversize piston available for the 787 RFI engine. That piston is 0.25 mm (.010 in) larger in diameter than the stock piston. When the oversize is installed, the guillotine will have a minimum clearance of 0.375 mm (.015 in) with the cylinder bore. This is the minimum operating clearance the guillotine should be used with. Clearance less than 0.375 mm (.015 in) will require reworking of the guillotine to achieve the proper clearance and radius.

DISASSEMBLY
RAVE Valve
Loosen Allen screws no. 26 each side of RAVE valve.

Remove RAVE valve no. 15.
Remove the cover no. 18 of the valve by releasing the spring no. 16.

WARNING
Firmly hold cover to valve base. The com-pression spring inside the valve is applying pressure against the cover.

Remove the compression spring no. 19.
Remove spring no. 30 retaining bellows no. 21 to valve piston no. 20.

Free bellows no. 21 from valve piston no. 20.

Unscrew valve piston no. 20 from sliding valve no. 22.

NOTE: Hold the sliding valve to prevent it from turning.

Remove compression spring no. 29.
Section 03 787 RFI ENGINE
Subsection 03 (TOP END)

1. Remove spring
Remove supporting ring no. 28.

1. Remove O-ring
Remove sliding valve no. 22.

1. Remove supporting ring
Remove O-ring no. 23.

1. Remove sliding valve
Remove bellows no. 21.
1. Remove bellows

Cylinder Head Cover and Cylinder Head

Engine in Watercraft
Disconnect temperature sensor wire and spark plug cables.
Connect spark plug cables on grounding device.
Proceed with ENGINE ON BENCH WORK below.

Engine on Bench Work
Remove cylinder head cover screws no. 14.
Remove cylinder head cover no. 1.
If shells, sand, salt or any other particles are present in cylinder head, clean with a vacuum cleaner.
Remove cylinder head no. 2.
If shells, sand, salt water or any other particles are present in cylinder cooling jacket, clean with a vacuum cleaner.

Exhaust Manifold
Remove 8 Allen screws and lock washers then withdraw exhaust manifold.

Cylinder
NOTE: When removing cylinder, make sure connecting rods do not hit crankcase edge.

Engine in Watercraft
Remove air intake silencer and support, refer to the appropriate VEHICLE SHOP MANUAL.

Remove tuned pipe, refer to the appropriate VEHICLE SHOP MANUAL.
Proceed with ENGINE ON BENCH WORK.

Engine on Bench Work
Remove cylinder screws no. 13.
Remove cylinders no. 9, while making sure connecting rods do not hit crankcase edge.

WARNING
If screws need to be heated for removal when engine is in watercraft, fuel system pressurization must be done first. Do not use open flame; use a heat gun.

NOTE: Even if only 1 cylinder needs repair, both cylinders should be lifted to allow 1-piece cylinder base gasket replacement.

Piston
NOTE: Engine features cageless piston pin bearings.
Bring piston to Top Dead Center (TDC) and install the rubber pad (P/N 295 000 101) over crankcase opening. Secure with screws. Lower piston until it sits on pad.

If the other cylinder has been removed, completely cover its opening with a clean rag.
To remove circlip no. 5, insert a pointed tool in piston notch then pry it out and discard.

WARNING
Always wear safety glasses when removing piston circlips.

To extract piston pin no. 4, use the piston pin puller (P/N 529 035 503) with the set of sleeves (P/N 529 035 542).

TYPICAL
1. Puller
2. Shoulder sleeve
3. Sleeve

- Fully thread on puller handle.
- Insert extractor spindle into the piston pin.
- Slide the sleeve and shoulder sleeve onto the spindle.
- Screw in extracting nut with the movable extracting ring toward spindle.

NOTE: The tool cutout must be positioned toward the bottom of the piston.
Section 03 787 RFI ENGINE
Subsection 03 (TOP END)

TYPICAL
1. Tool cut-out toward bottom of piston

– Firmly hold puller and rotate handle to pull piston pin no. 4.
– Rotate spindle until the shoulder sleeve is flushed with the piston recess.

TYPICAL
1. Shoulder sleeve flush with piston recess

– Loosen the extracting nut and remove puller.
– Remove the shoulder sleeve from piston.

CLEANING
Discard all gaskets and O-rings.
Clean all metal components in a solvent.
Clean water passages and make sure they are not clogged.
Remove carbon deposits from cylinder exhaust port, RAVE valve, cylinder head and piston dome.
Clean piston ring grooves with a groove cleaner tool, or a piece of broken ring.
INSPECTION

Refer to table below to find top end engine dimension specifications. For dimension measurement procedures, refer to ENGINE MEASUREMENT. Visually inspect all parts for corrosion damage. Inspect piston for damage. Light scratches can be sanded with a fine sand paper.

NOTE: When repairing a seized engine, connecting rods should be checked for straightness and crankshaft for deflection/misalignment.

Inspect plane surfaces for warpage. Small deformation can be corrected by grinding surface with a fine sand paper. Install sand paper on a surface plate and rub part against oiled sand paper.

<table>
<thead>
<tr>
<th>ENGINE MEASUREMENT</th>
<th>TOLERANCES</th>
<th>WEAR LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEW PARTS</td>
<td>(min.)</td>
</tr>
<tr>
<td>Combustion chamber volume</td>
<td>34.7 cc</td>
<td>37.9 cc</td>
</tr>
<tr>
<td>Cylinder taper</td>
<td>N.A.</td>
<td>0.05 mm (.002 in)</td>
</tr>
<tr>
<td>Cylinder out of round</td>
<td>N.A.</td>
<td>0.008 mm (.0003 in)</td>
</tr>
<tr>
<td>Piston skirt</td>
<td>N.A.</td>
<td>N.A.</td>
</tr>
<tr>
<td>Piston/cylinder wall clearance</td>
<td>0.13 mm (.005 in)</td>
<td>N.A.</td>
</tr>
<tr>
<td>Ring/piston groove clearance</td>
<td>0.025 mm (.001 in)</td>
<td>0.070 mm (.0027 in)</td>
</tr>
<tr>
<td>Ring end gap</td>
<td>0.40 mm (.016 in)</td>
<td>0.55 mm (.022 in)</td>
</tr>
</tbody>
</table>

N.A.: NOT APPLICABLE

NOTE: Replacement cylinder sleeves are available if necessary. Also, oversize pistons of 0.25 mm (.010 in) are available.

RAVE Valve
Check RAVE valve bellows no. 21 for cracks. Check sliding valve for wear, bent or other damages.

ASSEMBLY

Assembly is essentially the reverse of disassembly procedures. However pay particular attention to the following.

RAVE Valve
Make sure to insert O-ring no. 23 onto rod of sliding valve no. 22.
The TOP position of the sliding valve no. 22 is indicated on one side.

Install a new gasket no. 24. It must be installed at the same time as the sliding valve no. 22.
Position the valve housing no. 25 onto the cylinder so that its opening is toward the bottom.

When the valve is mounted onto the cylinder, move the valve piston no. 20 to ensure the sliding valve no. 22 moves easily and does not stick.
Cylinder Base Gasket

NOTE: The general procedure is to install a new gasket of the same thickness. However, if you do not know the gasket thickness that was installed or if a crank repair has involved replacement of connecting rods, refer to COMBUSTION CHAMBER VOLUME MEASUREMENT in ENGINE MEASUREMENT section to properly determine the required gasket thickness.

Different thicknesses of cylinder base gaskets are used for a precise adjustment of the combustion chamber volume.

To identify gasket thickness, refer to the identification holes on the gasket.

<table>
<thead>
<tr>
<th>GASKET THICKNESS</th>
<th>IDENTIFICATION HOLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 mm (.012 in)</td>
<td>3</td>
</tr>
<tr>
<td>0.4 mm (.016 in)</td>
<td>4</td>
</tr>
<tr>
<td>0.5 mm (.020 in)</td>
<td>5</td>
</tr>
<tr>
<td>0.6 mm (.024 in)</td>
<td>6</td>
</tr>
<tr>
<td>0.8 mm (.031 in)</td>
<td>8</td>
</tr>
</tbody>
</table>

Piston

At assembly, place the pistons no. 3 with the letters “AUS” (over an arrow on the piston dome) facing in direction of the exhaust port.

NOTE: The exhaust ports are located on the same side as the intake.

Carefully cover crankcase opening as for disassembly.

Piston Pin and Roller Bearing

To install roller bearing no. 4 and piston pin no. 6 use the piston pin puller (P/N 529 035 503) with the set of sleeves (P/N 529 035 542).

- Replacement bearings are held in place by a locating sleeve outside and 2 plastic cage halves inside.
- Push needle bearing together with inner halves out of the locating sleeve into the connecting rod bore.
- Replace the inner halves by the appropriate sleeve tool in the connecting rod bore.
- Insert piston pin into piston until it comes flush with inward edge of piston hub.
- Warm piston to approximately 50 - 60°C (122 - 140°F) and install it over connecting rod.
NOTE: Make sure thrust washers are present each side of needles.
- Install the shoulder sleeve tool on the opposite side of the piston pin.

- Insert extractor spindle into the piston pin, screw on extracting nut.

- Rotate handle to pull piston pin carefully into the piston.

Plastic Mounting Device Method
This is an alternate method when no service tool is available.

Replacement roller bearings are delivered in a convenient plastic mounting device. For installation, proceed as follows:
- Align replacement roller bearing with connecting rod bore.
- Carefully push inner plastic sleeve into connecting rod bore; outer plastic ring will release rollers.

- Make sure thrust washers are present each side of rollers.

- Insert piston pin into piston until it comes flush with inward edge of piston hub.
1. Piston pin flush here
2. Thrust washers

- Place piston over connecting rod and align bores, then gently tap piston pin with a fiber hammer to push out inner plastic ring on opposite side. Support piston from opposite side.

- As necessary, pull halves of inner sleeve with long nose pliers.

Circlip

Always use new circlips.

WARNING
Always wear safety glasses when installing piston circlips.

CAUTION: Always use new circlips. At installation, take care not to deform them. Circlips must not move freely after installation.

Secure circlip with its opening located at the bottom of the piston.

CAUTION: To minimize the stress on the circlips, it is important to install them as described.

1. Circlip opening at 6 o’clock (at bottom)

To easily insert circlip into piston, use the circlip installer (P/N 529 035 562).
Section 03 787 RFI ENGINE
Subsection 03 (TOP END)

Cylinder
To easily slide cylinder no. 9 over piston, use the piston ring compressor (P/N 420 876 979).

NOTE: Ring compressor will not fit on oversize parts.
Make sure to align ring end gap with piston locating pin. Slide tool over rings.

Slide cylinder over piston.

CAUTION: The hand retaining the piston should absorb the energy to protect the connecting rod.
When reassembling cylinders to crankcase, it is important to have them properly aligned so that exhaust flanges properly match up with exhaust manifold.

The exhaust manifold is used to align cylinders.

Torque screws in a criss-cross sequence for each cylinder to 20 N•m (15 lbf•ft). Repeat the procedure, retightening all cylinder screws to 40 N•m (30 lbf•ft).

Cylinder Head

Install cylinder head gasket.

Make sure to install O-rings no. 12 around spark plug holes and O-ring no. 11 of cylinder head as shown in the following illustration.

Cylinder Head Cover

Install cylinder head cover no. 1.

Apply Loctite 243 (blue) (P/N 293 800 060) below head of screws no. 14.
Apply also Molykote 111 (P/N 413 707 000) on threads of screws no. 14.

Torque cylinder head screws no. 14 to 12 N•m (106 lbf•in) as per following illustrated sequence. Repeat the procedure, retightening all screws to 24 N•m (17 lbf•ft).

Torque exhaust manifold screws to 24 N•m (17 lbf•ft) as per following illustrated sequence. Repeat the procedure, retightening screws to 40 N•m (30 lbf•ft).

Exhaust Manifold

Make sure gaskets are properly positioned prior to finalizing manifold installation.

Apply Loctite 518 (P/N 293 800 038) on 2 screws. On the other screws, apply Molykote 111 (P/N 413 707 000) on threads. Install screws. Refer to the following illustration for proper position of screws.

ADJUSTMENT

RAVE Valve

Turn the red plastic knob no. 17 until it is flush to the valve cover.
BOTTOM END

SERVICE TOOLS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>bearing heater</td>
<td>529 035 969</td>
<td>94</td>
</tr>
<tr>
<td>distance gauge</td>
<td>529 034 900</td>
<td>96</td>
</tr>
<tr>
<td>Distance ring</td>
<td>420 876 569</td>
<td>91</td>
</tr>
<tr>
<td>extension handle</td>
<td>295 000 125</td>
<td>89</td>
</tr>
<tr>
<td>gear/bearing puller</td>
<td>290 877 665</td>
<td>91</td>
</tr>
<tr>
<td>Protective cap</td>
<td>420 876 557</td>
<td>91–92</td>
</tr>
<tr>
<td>PTO flywheel extractor</td>
<td>295 000 156</td>
<td>89</td>
</tr>
<tr>
<td>Puller</td>
<td>420 877 635</td>
<td>91–92</td>
</tr>
<tr>
<td>Ring</td>
<td>420 977 480</td>
<td>92</td>
</tr>
<tr>
<td>Ring</td>
<td>420 977 490</td>
<td>91</td>
</tr>
<tr>
<td>Ring halves</td>
<td>420 876 330</td>
<td>92</td>
</tr>
<tr>
<td>Ring halves</td>
<td>420 977 475</td>
<td>91</td>
</tr>
<tr>
<td>Screw M8 x 40</td>
<td>420 840 681</td>
<td>91–92</td>
</tr>
<tr>
<td>Screw M8 x 70</td>
<td>420 841 201</td>
<td>91</td>
</tr>
<tr>
<td>temperature indicator stick</td>
<td>529 035 970</td>
<td>95</td>
</tr>
</tbody>
</table>

SERVICE PRODUCTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>chisel gasket remover</td>
<td>413 708 500</td>
<td>93</td>
</tr>
<tr>
<td>Loctite 518</td>
<td>293 800 038</td>
<td>99</td>
</tr>
<tr>
<td>Loctite 5910</td>
<td>293 800 081</td>
<td>97</td>
</tr>
<tr>
<td>Loctite 767 (anti-seize lubricant)</td>
<td>293 800 070</td>
<td>95, 100</td>
</tr>
<tr>
<td>Molykote 111</td>
<td>413 707 000</td>
<td>99</td>
</tr>
<tr>
<td>pulley flange cleaner</td>
<td>413 711 809</td>
<td>93</td>
</tr>
</tbody>
</table>
GENERAL

Engine has to be removed from watercraft to take apart bottom end. Refer to appropriate VEHICLE SHOP MANUAL.

Engine top end has to be disassembled to take apart bottom end. Refer to TOP END section in this manual.

NOTE: Crankcase halves are factory matched and therefore, are not interchangeable or available as single halves.

DISASSEMBLY

PTO Flywheel

To remove PTO flywheel no. 1, the crankshaft must be locked. Refer to MAGNETO SYSTEM and follow the procedure to lock the magneto flywheel.

PTO flywheel is loosened using PTO flywheel extractor (P/N 295 000 156).

Install special tool.

MAG Crankshaft Seal

MAG crankshaft seal is retained by the magneto housing. For replacement procedure, refer to MAGNETO SYSTEM section.

PTO Crankshaft Seal

If PTO crankshaft seal no. 5 has to be replaced, bottom end must be opened. Refer to CRANKCASE and CRANKSHAFT END BEARINGS below.

Crankcase

Before opening the crankcase, remove the following parts:
- magneto flywheel and housing, refer to MAGNETO SYSTEM section
- starter, refer to appropriate VEHICLE SHOP MANUAL
- rotary valve cover and valve, refer to ROTARY VALVE section
- engine top end, refer to TOP END section.
Put engine on a stand. Loosen crankcase screws.

1. M10 x 73.5 flanged screws
2. M8 x 53.5 flanged screws

Put engine back on a support. Insert a pry bar between crankcase lugs to separate halves.

CAUTION: Be careful to precision machined surfaces.

Remove crankshaft and counterbalance shaft.

Crankshaft End Bearings

NOTE: Do not needlessly remove crankshaft bearings.

Take apart crankcase as per procedure above.

Remove PTO seal.

To remove MAG and PTO end bearings no. 4 from crankshaft, use the following tools.
1. Puller (P/N 420 877 635)
2. Protective cap (P/N 420 876 557)
3. Distance ring (P/N 420 876 569)
4. Ring (P/N 420 977 490)
5. Ring halves (P/N 420 977 475)
6. Screw M8 x 40 (P/N 420 840 681)
7. Screw M8 x 70 (P/N 420 840 201)

NOTE: To facilitate ring or distance ring installation, lubricate their inside diameters.

TYPICAL

1. Removing crankshaft bearing

PTO End Crankshaft Bearing

As an alternate method, the outer PTO bearing and crankshaft gear can be removed in one step using another puller. See CRANKSHAFT GEAR no. 18 below

MAG End Crankshaft Bearing

As an alternate method, use a bearing extractor such as Proto no. 4332 and a press to remove two bearings at a time.

Crankshaft Gear

The crankshaft gear no. 18 and bearing no. 5 can be removed in one step using the gear/bearing puller (P/N 290 877 665).

Install the puller as per following illustration.
Secure puller in a vise and remove gear and bearing.

NOTE: If the inner PTO bearing needs to be replaced, remove the Woodruff key on the crankshaft.

Counterbalance Shaft Bearings

Bearings no. 15 on counterbalance shaft no. 13 can be removed by using the following tools:

1. Puller (P/N 420 877 635)
2. Protective cap (P/N 420 876 557)
3. Ring (P/N 420 977 480)
4. Ring halves (P/N 420 876 330)
5. Screw M8 x 40 (P/N 420 840 681)

Counterbalance Shaft Gear

To remove gear no. 14, first trace an index mark on the gear and counterbalance shaft.

NOTE: There is no Woodruff key to position the gear on the counterbalance shaft. An index mark must be traced to ease assembly procedure.
Use a press to remove the gear no. 14 from the counterbalance shaft.

CLEANING

General
Discard all oil seals, gaskets, O-rings and sealing rings.
Clean oil passages and make sure they are not clogged.
Clean all metal components in a solvent.

Crankshaft
Clean crankshaft end with sand paper no. 180 and remove all residue using pulley flange cleaner (P/N 413 711 809).

Crankcase
Crankcase mating surfaces are best cleaned using a combination of the chisel gasket remover (P/N 413 708 500) and a brass brush. Brush a first pass in one direction then make the final brushing perpendicularly (90°) to the first pass cross (hatch).

CAUTION: Never use a sharp object to scrape away old sealant as score marks incurred are detrimental to crankcase sealing.
Finish the cleaning with acetone.

CAUTION: Be careful not to spray cleaner on the painted surface of the engine. Do not wipe with rags. Use a new clean hand towel only.

INSPECTION

Refer to table below to find bottom end dimension specifications. For measurement procedures, refer to ENGINE MEASUREMENT.

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>TOLERANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEW PART</td>
</tr>
<tr>
<td></td>
<td>mm (in)</td>
</tr>
<tr>
<td>Crankshaft deflection MAG</td>
<td>N.A.</td>
</tr>
<tr>
<td>Crankshaft deflection CENTER</td>
<td>N.A.</td>
</tr>
<tr>
<td>Crankshaft deflection PTO</td>
<td>N.A.</td>
</tr>
<tr>
<td>Connecting rod big end axial play</td>
<td>min. 0.230 (.008)</td>
</tr>
</tbody>
</table>

Crankcase

Inspect plane surfaces for warpage. Small deformation can be corrected by grinding surface with a fine sandpaper. Install sandpaper on a surface plate and rub part against oiled sand paper.

Bearing

Inspect crankshaft bearings no. 4. Check for corrosion, scoring, pitting, chipping or other evidence of wear. Make sure plastic cage is not melted. Rotate and make sure they turn smoothly.

ASSEMBLY

Assembly is essentially the reverse of disassembly procedures. However pay particular attention to the following.

NOTE: It is recommended to spray injection oil on all moving parts when reassembling the engine.

Crankshaft End Bearings

Heat up the bearing(s) using the bearing heater (P/N 529 035 969). This will expand bearings and ease installation.
CAUTION: Bearing should not be heated to more than 80°C (176°F). Do not heat bearing with direct flame or heat gun or heated oil. Inappropriate heating procedure(s) may cause inner seal failure.

Turn bearing(s) several times during heating process for heating it (them) properly.

NOTE: Normally it takes approximately 10 minutes to heat up a bearing so in the event of replacing bearing, it’s recommended to start the bearing heating process prior to removal operation. Two bearings can be heated at the same time on one bearing heater.

Touch the inner race of the bearing with the temperature indicator stick (P/N 529 035 970). Stick will liquify when the bearing reach the proper temperature.

WARNING

Do not touch heated bearing with bare handle. Wear heat resisting gloves before handling the heated bearing(s).

Smear Loctite 767 (anti-seize lubricant) (P/N 293 800 070) on part of crankshaft where bearing fits.
Install distance ring no. 12. Position its chamfer toward crankshaft counterweight. Slide inner bearing on crankshaft until it bottoms. To properly position outer bearing, distance gauge (P/N 529 034 900) must be temporarily installed against inner bearing. Slide outer bearing until stopped by distance gauge, then remove distance gauge.

Crankshaft Gear

Position the long flange of the gear no. 18 toward the counterweight of the crankshaft. Also, make sure to align the gear keyway with the Woodruff key on the crankshaft.

Counterbalance Shaft Gear

Press gear no. 14 onto counterbalance shaft no. 13 taking care to align both marks previously traced. **CAUTION:** Counterbalance shaft must be properly assembled, otherwise engine will vibrate and premature wear will occur.

Proceed as follows to check if the gear no. 14 is properly positioned on the counterbalance shaft:
- Temporarily install the counterbalance shaft in the crankcase.
- Rotate the counterbalance shaft to align the notch of the gear with the crankcase.
1. Gear notch aligned with the crankcase

The notch of the counterweight on the opposite end of the counterbalance shaft must also be aligned with the crankcase.

1. Counterweight notch aligned with the crankcase

If notches are not aligned with the crankcase, remove the gear and repeat the procedure until the notches are properly aligned.

Crankcase

NOTE: Rotary valve shaft must be installed in crankcase before closing halves.

CAUTION: Before joining crankcase halves, make sure that crankshaft gear is well engaged with rotary valve shaft gear.

Crankcase Sealant Application

IMPORTANT: When beginning the application of the crankcase sealant, the assembly and the first torquing should be done within 10 minutes. It is suggested to have all you need on hand to save time.

NOTE: It is recommended to apply this specific sealant as described here to get an uniform application without lumps. If you do not use the roller method, you may use your finger to uniformly distribute the sealant.

Use the silicone-based Loctite 5910 (P/N 293 800 081) on mating surfaces.

NOTE: Refer to the product label for the curing time.

CAUTION: Do not use other products to seal crankcase. Do not use an activator with the Loctite 5910. Using a non silicone-based sealant over a previously sealed crankcase with Loctite 5910 will lead to poor adhesion and possibly a leaking crankcase. Even after cleaning, the Loctite 5910 would leave incompatible microscopic particles.

Use a plexiglass plate and apply some sealant on it. Use a soft rubber roller (50 - 75 mm (2 - 3 in)) (available in arts products suppliers for printmaking) and roll the sealant to get a thin uniform coat on the plate (spread as necessary). When ready, apply the sealant on crankcase mating surfaces.
Do not apply in excess as it will spread out inside crankcase.

Crankshaft and Counterbalance Shaft
Install crankshaft no. 3 in crankcase.

NOTE: When installing crankshaft in crankcase, make sure drive pins no. 6 of bearings are properly installed in crankcase recesses.

After crankshaft installation, install counterbalance shaft no. 13. Make sure to properly index crankshaft and counterbalance shaft by gear aligning marks.

CAUTION: Marks on the crankshaft and counterbalance shaft must be aligned, otherwise engine will vibrate and premature wear will occur.

Turn by hand the crankshaft and counterbalance shaft. Make sure they do not interfere with the crankcase.

PTO Crankshaft Seal
When installing seal no. 5, apply a light coat of lithium grease on seal lips.
Position PTO seal against the retaining shim; the gap between the seal no. 5 and bearing no. 4 will ensure proper lubrication of the bearing.

Counterbalance Shaft Bearing Cover
Install the bearing cover no. 19 with its hollow side toward the bearing.
1. Hollow side facing bearing

Crankcase Halves
Assemble crankcase halves.

Crankcase Screws
Apply Loctite 518 (P/N 293 800 038) on screw threads and Molykote 111 (P/N 413 707 000) below head screws.

Torque crankcase screws to 12 N•m (106 lbf•in) as per following sequence. Repeat procedure, retightening all screws to 24 N•m (17 lbf•ft).

As a final step, torque only M10 screws no. 8 of crankcase to 40 N•m (30 lbf•ft) as per following sequence.

Counterbalance Shaft Gear Oil
When crankcase assembly is completed, add 30 mL (1 oz) of motor oil SAE 30 to the counterbalance shaft gear through the crankcase filler plug.

Oil Fittings
If inlet and outlet oil fittings no. 11 of rotary valve shaft have been removed from crankcase, reinstall them with their end pointing toward ignition housing. Apply Loctite 518 (P/N 293 800 038) on threads of fittings.

PTO Flywheel
Install O-ring onto crankshaft.
1. O-ring

Apply Loctite 767 (anti-seize lubricant) (P/N 293 800 070) to crankshaft threads.

Using the same tools as for disassembly procedure, torque PTO flywheel to 110 N•m (81 lbf•ft).
ROTARY VALVE

SERVICE TOOLS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degree wheel</td>
<td>529 035 607</td>
<td>109</td>
</tr>
<tr>
<td>handle</td>
<td>420 877 650</td>
<td>106</td>
</tr>
<tr>
<td>puller</td>
<td>290 876 488</td>
<td>103</td>
</tr>
<tr>
<td>pusher</td>
<td>290 876 609</td>
<td>106</td>
</tr>
<tr>
<td>pusher</td>
<td>420 876 501</td>
<td>105</td>
</tr>
<tr>
<td>TDC gauge (short)</td>
<td>295 000 143</td>
<td>109</td>
</tr>
</tbody>
</table>

SERVICE PRODUCTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molykote 111 grease</td>
<td>413 707 000</td>
<td>106</td>
</tr>
</tbody>
</table>
787 RFI Engines

Anti-seize

20 N·m (15 lbf·ft)

9 N·m (80 lbf·in)

Injection oil

Molykote 111
GENERAL
The clearance of rotary valve cover or rotary valve shaft gear backlash can be performed without taking apart engine. However engine must be disassembled to work on rotary valve shaft/components.

INSPECTION (ASSEMBLED ENGINE)

Rotary Valve/Cover Clearance
Remove air intake silencer and throttle body. Refer to appropriate VEHICLE SHOP MANUAL. Refer to table below to find dimension specifications. For measurement procedures, refer to ENGINE MEASUREMENT section.

<table>
<thead>
<tr>
<th>TOLERANCES</th>
<th>ENGINE MEASUREMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEW PARTS</td>
<td>(min.) (max.)</td>
</tr>
<tr>
<td>Rotary valve/cover clearance</td>
<td>0.25 mm (0.010 in)</td>
</tr>
</tbody>
</table>

NOTE: If the rotary valve/cover clearance is too small, this could create an overheating situation and if the clearance is too high, this could create a hard starting situation.

Rotary Valve Shaft Gear Backlash
Verify rotary valve shaft gear backlash as follows: Remove PTO flywheel guard. Remove spark plugs, rotary valve cover and valve. Manually feel backlash at one position, then turn crankshaft about 1/8 turn and recheck. Continue this way to complete one revolution. Backlash must be even at all positions. Otherwise overhaul engine to find which part is faulty (gear, rotary valve shaft or crankshaft with excessive deflection).

DISASSEMBLY

Rotary Valve Cover
Remove air intake silencer and throttle body. Refer to appropriate VEHICLE SHOP MANUAL. Unscrew 4 retaining screws and withdraw rotary valve cover no. 1 and rotary valve no. 13.

Rotary Valve Shaft
To remove the rotary valve shaft assembly, the engine must be removed from watercraft (refer to appropriate VEHICLE SHOP MANUAL). First remove snap ring no. 4 from crankcase.

Open bottom end and remove crankshaft (refer to BOTTOM END section). To remove rotary valve shaft assembly, use the appropriate puller (P/N 290 876 488).

Place puller over rotary valve shaft end and screw on puller bolt into shaft. While retaining bolt with a wrench, turn puller nut CLOCKWISE until shaft comes out.
Shaft Bearing
To remove bearing no. 8 use a bearing extractor such as Snap-on no. CJ-950 (or equivalent) as illustrated. Slide off distance sleeve no. 14, remove snap ring no. 7 and washer no. 15 then press shaft out.

CAUTION: Ensure that rotary valve shaft is perfectly perpendicular with press tip.

End Bearing
CAUTION: Do not remove plug against bearing in upper crankcase half.

End bearing no. 9 can be easily removed from upper crankcase half using the following suggested tool (or equivalent):
- Snap-on hammer puller including:
 - handle CJ93-1
 - hammer CJ125-6
 - claws CJ93-4.

Circlip and Spring Seat
If it is necessary to disassemble components of rotary valve shaft assembly, use seat no. 6 to compress spring and remove circlips no. 5.

CAUTION: Ensure that rotary valve shaft is perfectly perpendicular with press tip.
Close puller claws so that they can be inserted in end bearing. Holding claws, turn puller shaft clockwise so that claws open and become firmly tight against bearing.

Slide puller hammer outwards and tap puller end. Retighten claws as necessary to always maintain them tight against bearing. Continue this way until bearing completely comes out.

CLEANING

Discard all seals and O-rings.

Clean all metal components in a solvent.

Clean oil passages and make sure they are not clogged.

Clean rotary valve shaft and inside of distance sleeve no. 14.

INSPECTION (DISASSEMBLED ENGINE)

Rotary Valve Cover

Inspect rotary valve cover no. 1 for warpage. Small deformation can be corrected by surfacing with fine sand paper on a surface plate. Surface part against oiled sand paper.

Rotary Valve Shaft

Refer to table below to find dimension specifications. For measurement procedures, refer to ENGINE MEASUREMENT section.

<table>
<thead>
<tr>
<th>ENGINE MEASUREMENT</th>
<th>TOLERANCES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NEW PARTS</td>
</tr>
<tr>
<td></td>
<td>(min.)</td>
</tr>
<tr>
<td></td>
<td>(max.)</td>
</tr>
<tr>
<td>Rotary valve shaft</td>
<td>N.A.</td>
</tr>
<tr>
<td>deflection</td>
<td>0.08 mm</td>
</tr>
<tr>
<td></td>
<td>(.003 in)</td>
</tr>
</tbody>
</table>

Gear

Visually check gear wear pattern. It should be even on tooth length all around. Otherwise it could indicate a bent shaft, check deflection. Replace gear if damaged.

Check for presence of brass filings in gear housing.

Bearings

Inspect bearings no. 8 and no. 9. Check for scoring, pitting, chipping or other evidence of wear. Make sure plastic cage (on bigger bearing) is not melted. Rotate them and make sure they turn smoothly.

ASSEMBLY

Assembly is essentially the reverse of disassembly procedures. However pay particular attention to the following.

End Bearing

To install end bearing no. 9 in crankcase, use pusher (P/N 420 876 501).

Position ball bearing shielded side towards rotary valve.
1. Shield side (toward gear)

Push bearing until it stops on its seat.

Seal

Apply Molykote 111 grease (P/N 413 707 000) on seal lips. Position seal no. 11 with shielded portion against shaft splines.

Shaft Bearing

Install ball bearing using bearing extractor as illustrated.

Install washer no. 15, snap ring no. 7 and slide distance sleeve no. 14 on shaft.

Rotary Valve Shaft Assembly

CAUTION: Crankcase halves must be separated and crankshaft must not be present to install rotary valve shaft assembly in crankcase.

To install rotary valve shaft in crankcase, use a pusher (P/N 290 876 609) and handle (P/N 420 877 650).
Push shaft until it stops on bearing seat.

Snap Ring
Position snap ring no. 4 so that its sharp edge faces outwards.

Rotary Valve
The rotary valve no. 13 controls the opening and closing of the inlet ports. Therefore its efficiency will depend on the precision of its installation.

IDENTIFICATION OF THE ROTARY VALVE

<table>
<thead>
<tr>
<th>ENGINE</th>
<th>ROTARY VALVE P/N</th>
<th>DURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>787 RFI</td>
<td>420 924 502</td>
<td>159°</td>
</tr>
</tbody>
</table>
There is no identification code on the valve. To find out the duration, place an angle finder on the valve and measure the valve cut-out angle or use the following template.
ROTARY VALVE TIMING

CAUTION: Never use the ridge molded in crankcase as a timing mark.

The following tools are required to measure rotary valve opening and closing angles in relation with MAG side piston:

Degree wheel (P/N 529 035 607)

TDC gauge (short) (P/N 295 000 143)

Rotary valve must be set so that timing occurs as follows:

<table>
<thead>
<tr>
<th>ENGINE</th>
<th>OPENING BTDC</th>
<th>CLOSING ATDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>787 RFI</td>
<td>147° ± 5</td>
<td>63.5° ± 5</td>
</tr>
</tbody>
</table>

Timing Procedure

The following timing procedure example uses these specifications:
OPENING: 147° BTDC
CLOSING: 65° ATDC

Proceed as follows:

- For opening mark, first align 360° line of degree wheel with BOTTOM of MAG side inlet port. Then, find 147° line on inner scale of degree wheel and mark crankcase at this point.

- For closing mark, first align 360° line of degree wheel with TOP of MAG side inlet port. Then, find 65° line on outer scale of degree wheel and mark crankcase at this point.

NOTE: Do not rotate the crankshaft.
CLOSING MARK

Step 1: Top of MAG inlet port. Align 360° line of degree wheel

Step 2: Find 65° on outer scale of degree wheel and mark here

– Remove degree wheel.
– Position rotary valve on shaft splines to have edges as close as possible to these marks with the MAG piston at TDC.

NOTE: Rotary valve is asymmetrical. Therefore, try flipping it over then reinstall on splines to obtain best installation position.

Apply injection oil on rotary valve before reassembling rotary valve cover.
– Remove TDC gauge.

Rotary Valve Cover

Install O-ring no. 12 and rotary valve cover no. 1 then torque screws no. 2 to 20 N•m (15 lbf•ft) in a criss-cross sequence.
TECHNICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>ENGINE</th>
<th>GTI RFI</th>
<th>GTI RFI LE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine type</td>
<td></td>
<td>ROTAX 787 RFI, 2-stroke</td>
<td></td>
</tr>
<tr>
<td>Induction type</td>
<td></td>
<td>Rotary valve</td>
<td></td>
</tr>
<tr>
<td>Exhaust system</td>
<td></td>
<td>Water cooled, water injected with regulator</td>
<td></td>
</tr>
<tr>
<td>Water injection fitting (head)</td>
<td>4.0 mm (.157 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water injection fitting (cone)</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water injection fitting (muffler)</td>
<td>4.5 mm (.177 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exhaust valve</td>
<td></td>
<td>Rotax Adjustable Variable Exhaust (RAVE)</td>
<td></td>
</tr>
<tr>
<td>Starting system</td>
<td></td>
<td>Electric start</td>
<td></td>
</tr>
<tr>
<td>Lubrication</td>
<td></td>
<td>VROI (Variable Rate Oil Injection)</td>
<td>XP-S™ synthetic 2-stroke</td>
</tr>
<tr>
<td>Oil injection pump</td>
<td>Direct driven</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cylinders</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bore</td>
<td></td>
<td>82 mm (3.228 in)</td>
<td></td>
</tr>
<tr>
<td>First oversize</td>
<td>82.25 mm (3.238 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second oversize</td>
<td>Not applicable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>74 mm (2.91 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Displacement</td>
<td>781.6 cm³ (47.7 in³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected compression ratio</td>
<td>6.0:1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder head volume</td>
<td>47.7 ± 0.4 cc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder head warpage (maximum)</td>
<td>0.05 mm (.002 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston ring type and quantity</td>
<td>1 semi-trapez – 1 rectangular</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring end gap</td>
<td></td>
<td>0.40 - 0.55 mm (.016 - .022 in)</td>
<td></td>
</tr>
<tr>
<td>Wear limit</td>
<td>1.00 mm (.039 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ring/piston groove</td>
<td></td>
<td>0.025 - 0.070 mm (.001 - .003 in)</td>
<td></td>
</tr>
<tr>
<td>Wear limit</td>
<td>0.24 mm (.009 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piston/cylinder wall clearance</td>
<td>New (minimum)</td>
<td>0.13 mm (.005 in)</td>
<td></td>
</tr>
<tr>
<td>Wear limit</td>
<td>0.22 mm (.009 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder taper (maximum)</td>
<td>0.10 mm (.004 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cylinder out of round (maximum)</td>
<td>0.08 mm (.003 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecting rod big end axial play</td>
<td>New</td>
<td>0.230 - 0.617 mm (.009 - .024 in)</td>
<td></td>
</tr>
<tr>
<td>Wear limit</td>
<td>1.2 mm (.047 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crankshaft deflection</td>
<td>MAG: 0.050 mm (.002 in); PTO: 0.030 mm (.001 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotary valve timing</td>
<td>Opening</td>
<td>147° ± 5° BTDC</td>
<td></td>
</tr>
<tr>
<td>Closing</td>
<td>63.5° ± 5° ATDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotary valve duration</td>
<td>159°</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rotary valve/cover clearance</td>
<td>0.25 - 0.35 mm (.010 - .014 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecting rod/crankshaft pin radial clearance</td>
<td>New</td>
<td>0.023 - 0.034 mm (.0009 - .0013 in)</td>
<td></td>
</tr>
<tr>
<td>Wear limit</td>
<td>0.050 mm (.002 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecting rod/piston pin radial clearance</td>
<td>New</td>
<td>0.02 - 0.033 mm (.0008 - .0013 in)</td>
<td></td>
</tr>
<tr>
<td>Wear limit</td>
<td>0.05 mm (.002 in)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterbalance shaft oil</td>
<td>Type</td>
<td>SAE 30 motor oil</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>30 mL (1 U.S. oz)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADDITIONAL INFORMATION:

www.SeaDooManuals.net
ENGINE

<table>
<thead>
<tr>
<th></th>
<th>3D RFI</th>
<th>3D RFI PREMIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine type</td>
<td>ROTAX 787 RFI, 2-stroke</td>
<td></td>
</tr>
<tr>
<td>Induction type</td>
<td>Rotary valve</td>
<td></td>
</tr>
<tr>
<td>Exhaust system</td>
<td>Type</td>
<td>Water cooled (water jacket), water injection in muffler only</td>
</tr>
<tr>
<td></td>
<td>Water injection fitting (head)</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>Water injection fitting (cone)</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>Water injection fitting (muffler)</td>
<td>3 x 3.5 mm (.138 in)</td>
</tr>
<tr>
<td>Exhaust valve</td>
<td>Rotax Adjustable Variable Exhaust (RAVE)</td>
<td></td>
</tr>
<tr>
<td>Starting system</td>
<td>Electric start</td>
<td></td>
</tr>
<tr>
<td>Lubrication</td>
<td>Fuel/oil mixture</td>
<td>VROI (Variable Rate Oil Injection)</td>
</tr>
<tr>
<td></td>
<td>Oil injection pump</td>
<td>Direct driven</td>
</tr>
<tr>
<td></td>
<td>Oil injection type</td>
<td>XP-S™ synthetic 2-stroke</td>
</tr>
<tr>
<td>Number of cylinders</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bore</td>
<td>Standard</td>
<td>82 mm (3.228 in)</td>
</tr>
<tr>
<td></td>
<td>First oversize</td>
<td>82.25 mm (3.238 in)</td>
</tr>
<tr>
<td></td>
<td>Second oversize</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Stroke</td>
<td>74 mm (2.91 in)</td>
<td></td>
</tr>
<tr>
<td>Displacement</td>
<td>781.6 cm³ (47.7 in³)</td>
<td></td>
</tr>
<tr>
<td>Corrected compression ratio</td>
<td></td>
<td>6.0:1</td>
</tr>
<tr>
<td>Cylinder head volume</td>
<td>47.7 ± 0.4 cc</td>
<td></td>
</tr>
<tr>
<td>Cylinder head warpage (maximum)</td>
<td></td>
<td>0.05 mm (.002 in)</td>
</tr>
<tr>
<td>Piston ring type and quantity</td>
<td></td>
<td>1 semi-trapez – 1 rectangular</td>
</tr>
<tr>
<td>Ring end gap</td>
<td>New</td>
<td>0.40 - 0.55 mm (.016 - .022 in)</td>
</tr>
<tr>
<td></td>
<td>Wear limit</td>
<td>1.00 mm (.039 in)</td>
</tr>
<tr>
<td>Ring/piston groove clearance</td>
<td></td>
<td>0.025 - 0.070 mm (.001 - .003 in)</td>
</tr>
<tr>
<td></td>
<td>Wear limit</td>
<td>0.24 mm (.009 in)</td>
</tr>
<tr>
<td>Piston/cylinder wall clearance</td>
<td></td>
<td>0.13 mm (.005 in)</td>
</tr>
<tr>
<td></td>
<td>Wear limit</td>
<td>0.22 mm (.0087 in)</td>
</tr>
<tr>
<td>Cylinder taper (maximum)</td>
<td></td>
<td>0.10 mm (.004 in)</td>
</tr>
<tr>
<td>Cylinder out of round (maximum)</td>
<td></td>
<td>0.08 mm (.003 in)</td>
</tr>
<tr>
<td>Connecting rod big end axial play</td>
<td></td>
<td>0.230 - 0.617 mm (.009 - .24 in)</td>
</tr>
<tr>
<td></td>
<td>Wear limit</td>
<td>1.2 mm (.047 in)</td>
</tr>
<tr>
<td>Crankshaft deflection</td>
<td>MAG side: 0.050 mm (.002 in); PTO side: 0.030 mm (.001 in)</td>
<td></td>
</tr>
<tr>
<td>Rotary valve timing</td>
<td>Opening</td>
<td>147° ± 5° BTDC</td>
</tr>
<tr>
<td></td>
<td>Closing</td>
<td>63.5° ± 5° ATDC</td>
</tr>
<tr>
<td>Rotary valve duration</td>
<td>159°</td>
<td></td>
</tr>
<tr>
<td>Rotary valve/cover clearance</td>
<td></td>
<td>0.25 - 0.35 mm (.010 - .014 in)</td>
</tr>
<tr>
<td>Connecting rod/crankshaft pin radial clearance</td>
<td></td>
<td>0.023 - 0.034 mm (.0009 - .0013 in)</td>
</tr>
<tr>
<td></td>
<td>Wear limit</td>
<td>0.050 mm (.002 in)</td>
</tr>
<tr>
<td>Connecting rod/piston pin radial clearance</td>
<td></td>
<td>0.020 - 0.033 mm (.0008 - .0013 in)</td>
</tr>
<tr>
<td></td>
<td>Wear limit</td>
<td>0.050 mm (.002 in)</td>
</tr>
<tr>
<td>Counterbalance shaft oil</td>
<td>Type</td>
<td>SAE 30 motor oil</td>
</tr>
<tr>
<td></td>
<td>Capacity</td>
<td>30 mL (1 U.S. oz)</td>
</tr>
</tbody>
</table>

ADDITIONAL INFORMATION:
ENGINE Shop Manual
Watercraft

2005 ROTAX®
717 and 787 RFI™ Engines